Thu, 21 Nov 2019

14:00 - 15:00
L4

Krylov methods for the solution of the nonlinear eigenvalue problem

Karl Meerbergen
(Catholic University of Leuven)
Abstract

Everybody is familiar with the concept of eigenvalues of a matrix. In this talk, we consider the nonlinear eigenvalue problem. These are problems for which the eigenvalue parameter appears in a nonlinear way in the equation. In physics, the Schroedinger equation for determining the bound states in a semiconductor device, introduces terms with square roots of different shifts of the eigenvalue. In mechanical and civil engineering, new materials often have nonlinear damping properties. For the vibration analysis of such materials, this leads to nonlinear functions of the eigenvalue in the system matrix.

One particular example is the sandwhich beam problem, where a layer of damping material is sandwhiched between two layers of steel. Another example is the stability analysis of the Helmholtz equation with a noise excitation produced by burners in a combustion chamber. The burners lead to a boundary condition with delay terms (exponentials of the eigenvalue).


We often receive the question: “How can we solve a nonlinear eigenvalue problem?” This talk explains the different steps to be taken for using Krylov methods. The general approach works as follows: 1) approximate the nonlinearity by a rational function; 2) rewrite this rational eigenvalue problem as a linear eigenvalue problem and then 3) solve this by a Krylov method. We explain each of the three steps.

Thu, 14 Nov 2019

14:00 - 15:00
L4

On the preconditioning of coupled multi-physics problems

Massimiliano Ferronato
(University of Padua)
Abstract

The fully coupled numerical simulation of different physical processes, which can typically occur
at variable time and space scales, is often a very challenging task. A common feature of such models is that
their discretization gives rise to systems of linearized equations with an inherent block structure, which
reflects the properties of the set of governing PDEs. The efficient solution of a sequence of systems with
matrices in a block form is usually one of the most time- and memory-demanding issue in a coupled simulation.
This effort can be carried out by using either iteratively coupled schemes or monolithic approaches, which
tackle the problem of the system solution as a whole.

This talk aims to discuss recent advances in the monolithic solution of coupled multi-physics problems, with
application to poromechanical simulations in fractured porous media. The problem is addressed either by proper
sparse approximations of the Schur complements or special splittings that can partially uncouple the variables
related to different physical processes. The selected approaches can be included in a more general preconditioning
framework that can help accelerate the convergence of Krylov subspace solvers. The generalized preconditioner
relies on approximately decoupling the different processes, so as to address each single-physics problem
independently of the others. The objective is to provide an algebraic framework that can be employed as a
general ``black-box'' tool and can be regarded as a common starting point to be later specialized for the
particular multi-physics problem at hand.

Numerical experiments, taken from real-world examples of poromechanical problems and fractured media, are used to
investigate the behaviour and the performance of the proposed strategies.

Thu, 07 Nov 2019

14:00 - 15:00
L4

A posteriori error analysis for domain decomposition

Simon Tavener
(Colorado State University)
Abstract

Domain decomposition methods are widely employed for the numerical solution of partial differential equations on parallel computers. We develop an adjoint-based a posteriori error analysis for overlapping multiplicative Schwarz domain decomposition and for overlapping additive Schwarz. In both cases the numerical error in a user-specified functional of the solution (quantity of interest), is decomposed into a component that arises due to the spatial discretization and a component that results from of the finite iteration between the subdomains. The spatial discretization error can be further decomposed in to the errors arising on each subdomain. This decomposition of the total error can then be used as part of a two-stage approach to construct a solution strategy that efficiently reduces the error in the quantity of interest.

Thu, 31 Oct 2019

14:00 - 15:00
Rutherford Appleton Laboratory, nr Didcot

On coarse spaces for solving the heterogenous Helmholtz equation with domain decomposition methods

Niall Bootland
(University of Strathclyde)
Abstract

The development of effective solvers for high frequency wave propagation problems, such as those described by the Helmholtz equation, presents significant challenges. One promising class of solvers for such problems are parallel domain decomposition methods, however, an appropriate coarse space is typically required in order to obtain robust behaviour (scalable with respect to the number of domains, weakly dependant on the wave number but also on the heterogeneity of the physical parameters). In this talk we introduce a coarse space based on generalised eigenproblems in the overlap (GenEO) for the Helmholtz equation. Numerical results within FreeFEM demonstrate convergence that is effectively independent of the wave number and contrast in the heterogeneous coefficient as well as good performance for minimal overlap.

Thu, 24 Oct 2019

14:00 - 15:00
L4

Reliable Real Computing

Fredrik Johansson
(University of Bordeaux)
Abstract

Can we get rigorous answers when computing with real and complex numbers? There are now many applications where this is possible thanks to a combination of tools from computer algebra and traditional numerical computing. I will give an overview of such methods in the context of two projects I'm developing. The first project, Arb, is a library for arbitrary-precision ball arithmetic, a form of interval arithmetic enabling numerical computations with rigorous error bounds. The second project, Fungrim, is a database of knowledge about mathematical functions represented in symbolic form. It is intended to function both as a traditional reference work and as a software library to support symbolic-numeric methods for problems involving transcendental functions. I will explain a few central algorithmic ideas and explain the research goals of these projects.

Mon, 02 Dec 2019
12:45
L2

CFT and black holes

Manuela Kulaxizi
(Trinity College, Dublin)
Abstract

We consider CFTs with large gap in the spectrum of operators and a large number of degrees of freedom (large central charge). We analytically study a Heavy-Heavy-Light-Light correlation function, where Heavy, refers to an operator with conformal dimension which scales like the central charge and Light, refers to an operator whose dimension is of order unity in the large central charge limit. In certain regimes, the correlation function can be examined analytically leading to very simple and suggestive expressions.

Thu, 10 Oct 2019

16:00 - 17:00
L4

Universal Approximation with Deep Narrow Networks

Patrick Kidger
(University of Oxford)
Abstract

The classical Universal Approximation Theorem certifies that the universal approximation property holds for the class of neural networks of arbitrary width. Here we consider the natural `dual' theorem for width-bounded networks of arbitrary depth, for a broad class of activation functions. In particular we show that such a result holds for polynomial activation functions, making this genuinely different to the classical case. We will then discuss some natural extensions of this result, e.g. for nowhere differentiable activation functions, or for noncompact domains.
 

Tue, 03 Dec 2019

15:45 - 16:45
L4

Combinatorial Lefschetz theorems beyond positivity

Karim Adiprasito
(Hebrew University)
Abstract

The hard Lefschetz theorem is a fundamental statement about the symmetry of the cohomology of algebraic varieties. In nearly all cases that we systematically understand it, it comes with a geometric meaning, often in form of Hodge structures and signature data for the Hodge-Riemann bilinear form.

Nevertheless, similar to the role the standard conjectures play in number theory, several intriguing combinatorial problems can be reduced to hard Lefschetz properties, though in extreme cases without much geometric meaning, lacking any existence of, for instance,  an ample cone to do Hodge theory with.

I will present a way to prove the hard Lefschetz theorem in such a situation, by introducing biased pairing and perturbation theory for intersection rings. The price we pay is that the underlying variety, in a precise sense, has itself to be sufficiently generic. For instance, we shall see that any quasismooth, but perhaps nonprojective toric variety can be "perturbed" to a toric variety with the same equivariant cohomology, and that has the hard Lefschetz property.

Finally, I will discuss how this applies to prove some interesting theorems in geometry, topology and combinatorics. In particular, we shall see a generalization of a classical result due to Descartes and Euler: We prove that if a simplicial complex embeds into euclidean 2d-space, the number of d-simplices in it can exceed the number of (d-1)-simplices by a factor of at most d+2.

Subscribe to