Search for Sources of Astrophysical Neutrinos Using Seven Years of
IceCube Cascade Events
Aartsen, M Ackermann, M Adams, J Aguilar, J Ahlers, M Ahrens, M Alispach, C Andeen, K Anderson, T Ansseau, I Anton, G Argüelles, C Auffenberg, J Axani, S Backes, P Bagherpour, H Bai, X V, A Barbano, A Barwick, S Bastian, B Baum, V Baur, S Bay, R Beatty, J Becker, K Tjus, J BenZvi, S Berley, D Bernardini, E Besson, D Binder, G Bindig, D Blaufuss, E Blot, S Bohm, C Börner, M Böser, S Botner, O Böttcher, J Bourbeau, E Bourbeau, J Bradascio, F Braun, J Bron, S Brostean-Kaiser, J Burgman, A Buscher, J Busse, R Carver, T Chen, C Cheung, E Chirkin, D Clark, K Classen, L Coleman, A Collin, G Conrad, J Coppin, P Correa, P Cowen, D Cross, R Dave, P André, J Clercq, C DeLaunay, J Dembinski, H Deoskar, K Ridder, S Desiati, P Vries, K Wasseige, G With, M DeYoung, T Diaz, A Díaz-Vélez, J Dujmovic, H Dunkman, M Dvorak, E Eberhardt, B Ehrhardt, T Eller, P Engel, R Evenson, P Fahey, S Fazely, A Felde, J Filimonov, K Finley, C Franckowiak, A Friedman, E Fritz, A Gaisser, T Gallagher, J Ganster, E Garrappa, S Gerhardt, L Ghorbani, K Glauch, T Glüsenkamp, T Goldschmidt, A Gonzalez, J Grant, D Griffith, Z Günder, M Gündüz, M Haack, C Hallgren, A Halve, L Halzen, F Hanson, K Haungs, A Hebecker, D Heereman, D Heix, P Helbing, K Hellauer, R Henningsen, F Hickford, S Hignight, J Hill, G Hoffman, K Hoffmann, R Hoinka, T Hokanson-Fasig, B Hoshina, K Huang, F Huber, M Huber, T Hultqvist, K Hünnefeld, M Hussain, R In, S Iovine, N Ishihara, A Japaridze, G Jeong, M Jero, K Jones, B Jonske, F Joppe, R Kang, D Kang, W Kappes, A Kappesser, D Karg, T Karl, M Karle, A Katz, U Kauer, M Kelley, J Kheirandish, A Kim, J Kintscher, T Kiryluk, J Kittler, T Klein, S Koirala, R Kolanoski, H Köpke, L Kopper, C Kopper, S Koskinen, D Kowalski, M Krings, K Krückl, G Kulacz, N Kurahashi, N Kyriacou, A Labare, M Lanfranchi, J Larson, M Lauber, F Lazar, J Leonard, K Leszczyńska, A Leuermann, M Liu, Q Lohfink, E Mariscal, C Lu, L Lucarelli, F Lünemann, J Luszczak, W Lyu, Y Ma, W Madsen, J Maggi, G Mahn, K Makino, Y Mallik, P Mallot, K Mancina, S Mariş, I Maruyama, R Mase, K Maunu, R McNally, F Meagher, K Medici, M Medina, A Meier, M Meighen-Berger, S Menne, T Merino, G Meures, T Micallef, J Momenté, G Montaruli, T Moore, R Morse, R Moulai, M Muth, P Nagai, R Naumann, U Neer, G Niederhausen, H Nowicki, S Nygren, D Pollmann, A Oehler, M Olivas, A O'Murchadha, A O'Sullivan, E Palczewski, T Pandya, H Pankova, D Park, N Peiffer, P Heros, C Philippen, S Pieloth, D Pinat, E Pizzuto, A Plum, M Porcelli, A Price, P Przybylski, G Raab, C Raissi, A Rameez, M Rauch, L Rawlins, K Rea, I Reimann, R Relethford, B Renschler, M Renzi, G Resconi, E Rhode, W Richman, M Robertson, S Rongen, M Rott, C Ruhe, T Ryckbosch, D Rysewyk, D Safa, I Herrera, S Sandrock, A Sandroos, J Santander, M Sarkar, S Satalecka, K Schaufel, M Schieler, H Schlunder, P Schmidt, T Schneider, A Schneider, J Schröder, F Schumacher, L Sclafani, S Seckel, D Seunarine, S Shefali, S Silva, M Snihur, R Soedingrekso, J Soldin, D Song, M Spiczak, G Spiering, C Stachurska, J Stamatikos, M Stanev, T Stein, R Steinmüller, P Stettner, J Steuer, A Stezelberger, T Stokstad, R Stößl, A Strotjohann, N Stürwald, T Stuttard, T Sullivan, G Taboada, I Tenholt, F Ter-Antonyan, S Terliuk, A Tilav, S Tomankova, L Tönnis, C Toscano, S Tosi, D Trettin, A Tselengidou, M Tung, C Turcati, A Turcotte, R Turley, C Ty, B Unger, E Elorrieta, M Usner, M Vandenbroucke, J Driessche, W Eijk, D Eijndhoven, N Vanheule, S Santen, J Vraeghe, M Walck, C Wallace, A Wallraff, M Wandkowsky, N Watson, T Weaver, C Weindl, A Weiss, M Weldert, J Wendt, C Werthebach, J Whelan, B Whitehorn, N Wiebe, K Wiebusch, C Wille, L Williams, D Wills, L Wolf, M Wood, J Wood, T Woschnagg, K Wrede, G Xu, D Xu, X Xu, Y Yanez, J Yodh, G Yoshida, S Yuan, T Zöcklein, M The Astrophysical Journal: an international review of astronomy and astronomical physics (13 Nov 2019) http://arxiv.org/abs/1907.06714v1
Thu, 07 Nov 2019

16:00 - 17:00
L4

Sensitivity Analysis of the Utility Maximization Problem with Respect to Model Perturbations

Oleksii Mostovyi
(University of Connecticut)
Abstract

First, we will give a brief overview of the asymptotic analysis results in the context of optimal investment. Then, we will focus on the sensitivity of the expected utility maximization problem in a continuous semimartingale market with respect to small changes in the market price of risk. Assuming that the preferences of a rational economic agent are modeled by a general utility function, we obtain a second-order expansion of the value function, a first-order approximation of the terminal wealth, and construct trading strategies that match the indirect utility function up to the second order. If a risk-tolerance wealth process exists, using it as numeraire and under an appropriate change of measure, we reduce the approximation problem to a Kunita–Watanabe decomposition. Then we discuss possible extensions and special situations, in particular, the power utility case and models that admit closed-form solutions. The central part of this talk is based on the joint work with Mihai Sirbu.

The 1918 Spanish influenza pandemic claimed around fifty million lives worldwide. Interventions were introduced to reduce the spread of the virus, but these were not based on quantitative assessments of the likely effects of different control strategies. One hundred years later, mathematical modelling is routinely used for forecasting and to help plan interventions during outbreaks in populations of humans, animals and plants.

Fri, 19 Jul 2019
12:00
L6

Mass, Kaehler Manifolds, and Symplectic Geometry

Prof Claude LeBrun
(Stonybrook)
Abstract

In the speaker's previous joint work with Hans-Joachim Hein, a mass formula for asymptotically locally Euclidean (ALE) Kaehler manifolds was proved, assuming only relatively weak fall-off conditions on the metric. However, the case of real dimension four presented technical difficulties that led us to require fall-off conditions in this special dimension that are stronger than the Chrusciel fall-off conditions that sufficed in higher dimensions. This talk will explain how a new proof of the 4-dimensional case, using ideas from symplectic geometry, shows that Chrusciel fall-off suffices to imply all our main results in any dimension. In particular, I will explain why our Penrose-type inequality for the mass of an asymptotically Euclidean Kaehler manifold always still holds, given only this very weak metric fall-off hypothesis.
 

Mon, 25 Nov 2019
14:15
L4

D modules and rationality questions

Ludmil Katzarkov
(University of Vienna)
Abstract

In this talk we will discuss a new approach to non rationality of projective varieties based on HMS. Examples will be discussed.

Mon, 18 Nov 2019
14:15
L4

Quantization through Morita equivalence

Francis Bischoff
(Oxford)
Abstract

In this talk I will discuss a new proposal for constructing quantizations of holomorphic Poisson structures, and generalized complex manifolds more generally, which is based on using the A model of an associated symplectic manifold known as a Morita equivalence. This construction will be illustrated through the example of toric Poisson structures.

 

Tue, 26 Nov 2019
15:30
L4

Degenerate Morse theory and quivers

Frances Kirwan
(Oxford)
Abstract


This talk is an update on joint work with Geoff Penington on extending Morse theory to smooth functions on compact manifolds with very mild nondegeneracy assumptions. The only requirement is that the critical locus should have just finitely many connected components. To such a function we associate a quiver with vertices labelled by the connected components of the critical locus. The analogue of the Morse–Witten complex in this situation is a spectral sequence of multicomplexes supported on this quiver which abuts to the homology of the manifold.

Subscribe to