12:45
Brackets, involutivity and generalised geometry for 4d, N=1 backgrounds
Abstract
Supergravity backgrounds are an essential ingredient in string theory or field theories via AdS/CFT. The simplest example of a 4d, N=1 background is the product of four-dimensional Minkowski space with a seven-dimensional manifold with G_2 holonomy in M-theory. For more complicated backgrounds where we allow non-zero fluxes, the supersymmetry conditions can be rephrased in terms of G-structure data. The geometry of these backgrounds is often complicated and their general features are not well understood.
In this talk, I will define the analogue of G_2 geometry for generic 4d, N=1 backgrounds with flux in both type II and eleven-dimensional supergravity. The geometry is characterised by a G-structure in 'exceptional generalised geometry' that includes G_2 structures and Hitchin's generalised geometry as subcases. Supersymmetry is then equivalent to integrability of the structures, which appears as an involutivity condition and a moment map for diffeomorphisms and gauge transformations. I will show how this works in a few simple examples and discuss how this can be used to understand general properties of supersymmetric backgrounds.
COXIC: Complexity Oxford Imperial College
Complexity Oxford Imperial College, COXIC, is a series of workshops aiming at bringing together researchers in Oxford and Imperial College interested in complex systems. The events take place twice a year, alternatively in Oxford and in London, and give the possibility to PhD students and young postdocs to present their research.
Schedule:
2:00: Welcome
2:15: Maria del Rio Chanona (OX), On the structure and dynamics of the job market
2:35: Max Falkenberg McGillivray (IC), Modelling the broken heart
2:55: Fernando Rosas (OX), Quantifying high-order interdependencies
3:15 - 4:00: Coffee break
4:00: Rishi Nalin Kumar (IC), Building scalable agent based models using open source technologies
4:20: Rodrigo Leal Cervantes (OX) Greed Optimisation of Modularity with a Self-Adaptive Resolution Parameter
4:40: TBC
5:00: Social event at the Lamb & Flag
12:45
Topology, superposition and typicality in quantum gravity
Abstract
I will describe recent advances in the study of quantum gravity where one can explicitly show in examples that superpositions of states with fixed topology can change the topology of spacetime. These effects lead to paradoxes that are resolved in effective field theory by the introduction of code subspaces. I will also talk about more typical states and issues related on how to decide if a black hole horizon is smooth or not.
The Sum-Product Phenomenon
Abstract
In 1983, Erdos and Szemerédi conjectured that for any finite subset of the integers, either the sumset or the product set has nearly quadratic growth. Applications include incidence geometry, exponential sums, compressed image sensing, computer science, and elsewhere. We discuss recent progress towards the main conjecture and related questions.
16:00
Leighton's Theorem
Abstract
Leighton's Theorem states that if two finite graphs have a common universal cover then they have a common finite cover. I will present a new proof of this using groupoids, and then talk about two generalisations of the theorem that can also be tackled with this groupoid approach: one gives us control over the local structure of the common finite cover, and the other deals with graphs of spaces.
16:00
Groups with negative curvature
Abstract
I will present a survey of commonly considered notions of negative curvature for groups, focused on generalising properties of Gromov hyperbolic groups.
Optimising the parallel picking strategy for a Besi component wafer
Abstract
The time bottleneck in the manufacturing process of Besi (company involved in ESGI 149 Innsbruck) is the extraction of undamaged dies from a component wafer. The easiest way for them to speed up this process is to reduce the number of 'selections' made by the robotic arm. Each 'selection' made by this robotic arm can be thought of as choosing a 2x2 submatix of a large binary matrix, and editing the 1's in this submatrix to be 0's. The quesiton is: what is the fewest number of 2x2 submatrices required to cover the full matrix, and how can we find this number. This problem can be solved exactly using integer programming methods, although this approach proves to be prohibitively expensive for realistic sizes. In this talk I will describe the approach taken by my team at EGSI 149, as well as directions for further improvement.