Fri, 31 May 2019

14:00 - 15:00
L3

Algorithmic generation of physiologically realistic patterns of fibrosis in the heart

Professor Kevin Burrage
(School of Mathematical Sciences Queensland University of Technology Brisbane)
Abstract

Cardiac fibrosis plays a significant role in the disruption of healthy electrical signalling in the heart, creating structural heterogeneities that induce and stabilise arrhythmia.  However, a proper understanding of the consequences of cardiac fibrosis must take into account the complex and highly variable patterns of its spatial localisation in the heart, which significantly affects the extent and manner of its impacts on cardiac wave propagation. In this work we present a methodology for the algorithmic generation of fibrotic patterns via Perlin noise, a technique for computationally efficient generation of textures in computer graphics.

Our approach works directly from image data to create populations of pattern realisations that all resemble the target image under a set of metrics. Our technique thus serves as a type of data enrichment, enabling analysis of how variability in the precise placement of fibrotic structures modulates their electrophysiological impact. We demonstrate our method, and the types of analysis it can enable, using a widely referenced histological image of four different types of microfibrotic structure. Our generator and Bayesian tuning method prove flexible enough to successfully capture each of these very distinct patterns.

We demonstrate the importance of this tool, by presenting 2D simulations overlayed on the generated images that highlight the effects of microscopic variability on the electrophysiological impact of fibrosis. Finally, we discuss the application of our methodology to the increasingly available imaging data of fibrotic patterning on a more macroscopic scale, and indeed to other areas of science underpinned by image based modelling and simulation.    

Fri, 17 May 2019

14:00 - 15:00
L3

Combining computational modelling, structural biology and immunology to understand Antigen processing

Professor Tim Elliott
(Dept of Medicine University of Southampton)
Abstract

Competition between peptides for binding and presentation by MHC class I molecules decides the immune response to foreign or tumor antigens. Many previous studies have attempted to classify the immunogenicity of a peptide using machine learning algorithms to predict the affinity, or half-life, of the peptide binding to MHC. However immunopeptidome analyses have shown a poor correlation between sequence based predictions and the abundance on the cell surface of the experimentally identified peptides. Such metrics are, for instance, only comparable when the abundance of competing peptides can be accurately quantified. We have developed a model for predicting the relative presentation of competing peptides that takes into account off-rate, source protein abundance and turnover and cofactor-assisted MHC assembly with peptides. This model is mechanism based so that it can accommodate complex biology phenomena such as inflammation, up or downregulation of peptide loading complex chaperones, appearance of a mutanome. We have used aspects of the model to drive an investigation of the precise molecular mechanism of peptide selection by MHC I and its associated intracellular cofactors.

Fri, 10 May 2019
00:00

None

PLEASE NOTE THAT THIS SEMINAR IS CANCELLED DUE TO UNFORESEEN CIRCUMSTANCES
Abstract

PLEASE NOTE THAT THIS SEMINAR IS CANCELLED DUE TO UNFORSEEN CIRCUMSTANCES.

Fri, 03 May 2019

14:00 - 15:00
L3

Biomechanics can provide a new perspective on microbiology

Professor Takuji Ishikawa
(Dept. Finemechanics Grad. Sch. Eng Tohoku University)
Abstract

Despite their tiny size, microorganisms play a huge role in many biological, medical, and engineering phenomena. For example, massive plankton blooms are an integral part of the oceanic ecosystem. Algal cells incorporate carbon dioxide, which affects global warming. In industry, microorganisms are used in bioreactors to produce food and medicines and to treat sewage. The human body hosts hundreds of microorganism species, and the number of microorganisms in the human body is roughly double the number of cells in the body. In the intestine, approximately 1 kg of enterobacteria form a unique ecosystem, called the gut flora, which plays important roles in digestion and in relation to infection. Because of the considerable influence that microorganisms have on human life, the study of their behavior and function is important.

Recent research has demonstrated the importance of biomechanics in understanding the behavior and functions of microorganisms. For example, red tides can be induced by the interplay between the background flow and swimming cells. A dense suspension of bacteria can generate a coherent structure, which strongly enhances mass transport in a suspension. These phenomena show that the physical environments around cells alter their behavior and biological functions. Such a biomechanical understanding is still lacking in microbiology, and we believe that biomechanics can provide new perspectives on future microbiology.

In this talk, we first introduce some of our studies of the behavior of individual swimming microorganisms near surfaces. We show that hydrodynamic forces can trap cells at liquid–air or liquid–solid interfaces. We then introduce interactions between a pair of swimming microorganisms, because a two-body interaction is the simplest many-body interaction. We show that our mathematical models can describe the interactions between two nearby swimming microorganisms. Collective motions formed by a group of swimming microorganisms are also introduced. We show that some collective motions of microorganisms, such as coherent structures of bacterial suspensions, can be understood in terms of fluid mechanics. We then discuss how cellular-level phenomena can change the rheological and diffusion properties of a suspension. The macroscopic properties of a suspension are strongly affected by mesoscale flow structures, which in turn are strongly affected by the interactions between cells. Hence, a bottom-up strategy, i.e., from a cellular level to a continuum suspension level, represents a natural approach to the study of a suspension of swimming microorganisms. Finally, we discuss whether our understanding of biological functions can be strengthened by the application of biomechanics, and how we can contribute to the future of microbiology.

Mon, 10 Jun 2019
15:45
L6

Unitary group integrals, surfaces, and mapping class groups

Michael Magee
(Durham University)
Abstract


For any word w in a free group of rank r>0, and any compact group G, w induces a `word map' from G^r to G by substitutions of elements of G for the letters of w. We may also choose the r elements of G independently with respect to Haar measure on G, and then apply the word map. This gives a random element of G whose distribution depends on w. An interesting observation is that this distribution doesn't change if we change w by an automorphism of the free group. It is a wide open question whether the measures induced by w on compact groups determine w up to automorphisms.
My talk will be mostly about the case G = U(n), the n by n complex unitary matrices. The technical tool we use is a precise formula for the moments of the distribution induced by w on U(n). In the formula, there is a surprising appearance of concepts from infinite group theory, more specifically, Euler characteristics of mapping class groups of surfaces. I'll explain how our formula allows us to make progress on the question described above.
This is joint work with Doron Puder (Tel Aviv).
 

Mon, 03 Jun 2019
15:45
L6

The Tits alternative for two-dimensional Artin groups

Alexandre Martin
(Heriot Watt University)
Abstract

A group is said to satisfy the Tits Alternative if its finitely generated subgroups exhibit a striking dichotomy: they are either "big" (they contain a non-abelian free subgroup) or "small" (they are virtually soluble). Many groups of geometric interest have been shown to satisfy the Tits Alternative: linear groups, mapping class groups of hyperbolic surfaces, etc. In this talk, I will explain how one can use ideas from group actions in negative curvature to prove such a dichotomy. In particular, I will show how one can prove a strengthening of the Tits Alternative for a large class of Artin groups. This is joint work with Piotr Przytycki.

Tue, 02 Apr 2019

11:00 - 16:00
L2

MiLS Meeting on Multiscale modelling techniques and their applications in biology and medicine

Various Speakers
(Mathematical Institute)
Further Information

By Daniele Avitabile on Mar 04, 2019 09:38 pm

The ninth Mathematics in Life Sciences (MiLS) meeting will focus on "Multiscale modelling techniques and their applications in biology and medicine". It will take place on the 2nd of April 2019 from 11am to 4pm, at the University of Oxford. This is the first meeting organised in collaboration with our new members, Sarah Waters (University of Oxford), and  Alessia Annibale (King's College London).

The meeting will consist of two review talks aimed at non-experts, combined with several contributed research talks. The review talks will be given by Oliver Jensen (University of Manchester), and Patrick Farrell (University of Oxford).

Attendance to the meeting is free of charge, but we kindly ask you to register your intention to attend, by sending an email to Nicola.Kirkham@maths.ox.ac.uk

We solicit contributed talks and posters, especially from early career researchers and postgraduate students. If you are interested in giving a talk, please send a title and abstract to Sarah.Waters (waters [at] maths [dot] ox [dot] ac [dot] uk) and Daniele Avitabile (daniele [dot] avitabile [at] nottingham [dot] ac [dot] uk).

You can read more about MiLS here and here and you can subscribe to our low-traffic newsletter here.


Read in browser »

 

Wed, 06 Mar 2019
11:00
N3.12

Introduction to Large Cardinal theory

Alex Chevalier
(University of Oxford)
Abstract

I will present some basic concepts in Large Cardinal theory. A Large Cardinal axiom is the assertion of the existence of a cardinal so large that it entails the existence of set-sized models of ZFC, something which we know ZFC alone does not do. Large Cardinal axioms are therefore strengthenings of ZFC. We believe them to be consistent with ZFC, but this is a touchy subject. Nevertheless, Large Cardinal axioms have become an essential tool in set theory, providing insight into the fine structure of the set theoretic universe. In my talk, I will focus on inaccessible and measurable cardinals, and, if time permits, I will discuss supercompact cardinals.

Mon, 27 May 2019
15:45
L6

Secondary invariants and mock modularity

Theo Johnson-Freyd
(Perimeter Institute for Theoretical Physics)
Abstract

A two-dimensional, minimally Supersymmetric Quantum Field Theory is "nullhomotopic" if it can be deformed to one with spontaneous supersymmetry breaking, including along deformations that are allowed to "flow up" along RG flow lines. SQFTs modulo nullhomotopic SQFTs form a graded abelian group $SQFT_\bullet$. There are many SQFTs with nonzero index; these are definitely not nullhomotopic, and indeed represent nontorision classes in $SQFT_\bullet$. But relations to topological modular forms suggests that $SQFT_\bullet$ also has rich torsion. Based on an analysis of mock modularity and holomorphic anomalies, I will describe explicitly a "secondary invariant" of SQFTs and use it to show that a certain element of $SQFT_3$ has exact order $24$. This work is joint with D. Gaiotto and E. Witten.

Subscribe to