As you settle into your seat for a flight to a holiday destination or as part of yet another business trip, it is very easy to become absorbed by the glossy magazines or the novel you've been waiting forever to start reading. Understandably, the phrase "safety features on board this aircraft" triggers a rather unenthusiastic response. But you may be surprised by some of the incredible technology just a few feet away that is there to make sure everything goes smoothly.

 

Wed, 17 Oct 2018
16:00
C1

Graph products of groups

Motiejus Valiunas
(Southampton University)
Abstract

Graph products are a class of groups that 'interpolate' between direct and free products, and generalise the notion of right-angled Artin groups. Given a property that free products (and maybe direct products) are known to satisfy, a natural question arises: do graph products satisfy this property? For instance, it is known that graph products act on tree-like spaces (quasi-trees) in a nice way (acylindrically), just like free products. In the talk we will discuss a construction of such an action and, if time permits, its relation to solving systems of equations over graph products.

Fri, 26 Oct 2018

12:00 - 13:00
L4

Stochastic perturbations of singular polynomial eigenvalue problems

Martin Lotz
(University of Warwick)
Abstract


One occasionally encounters computational problems that work just fine on ill-posed inputs, even though they should not. One example is polynomial eigenvalue problems, where standard algorithms such as QZ can find a desired solution to instances with infinite condition number to machine precision, while being completely oblivious to the ill-conditioning of the problem. One explanation is that, intuitively, adversarial perturbations are extremely unlikely, and "for all practical purposes'' the problem might not be ill-conditioned at all. We analyse perturbations of singular polynomial eigenvalue problems and derive methods to bound the likelihood of adversarial perturbations for any given input in different stochastic models.


Joint work with Vanni Noferini
 

Wed, 17 Oct 2018
11:00
N3.12

Rogers-Ramanujan Type Identities and Partitions

Adam Keilthy
(University of Oxford)
Abstract

In this talk, we shall introduce various identities among partitions of integers, and how these can be expressed via formal power series. In particular, we shall look at the Rogers Ramanujan identities of power series, and discuss possible combinatorial proofs using partitions and Durfree squares.

Mon, 03 Dec 2018
16:00
L3

General lessons on 4d SCFTs from Geometry

Mario Martone
(UT Austin)
Abstract

The geometry of the moduli space of 4d  N=2  moduli spaces, and in particular of their Coulomb branches (CBs), is very constrained. In this talk I will show that through its careful study, we can learn general and somewhat surprising lessons about the properties of N=2  super conformal field theories (SCFTs). Specifically I will show that we can prove that the scaling dimension of CB coordinates, and thus of the corresponding operator at the SCFT fixed point, has to be rational and it has a rank-dependent maximum value and that in general the moduli spaces of N=2 SCFTs can have metric singularities as well as complex structure singularities. 

Finally I will outline how we can explicitly perform a classification of geometries of N>=3 SCFTs and carry out the program up to rank-2. The results are surprising and exciting in many ways.

Neurodegenerative diseases such as Alzheimer’s or Parkinson’s are devastating conditions with poorly understood mechanisms and no known cure. Yet a striking feature of these conditions is the characteristic pattern of invasion throughout the brain, leading to well-codified disease stages visible to neuropathology and associated with various cognitive deficits and pathologies.

Tue, 20 Nov 2018
16:00
L5

Definably simple groups in valued fields

Dugald Macpherson
(Leeds)
Abstract

I will discuss joint work with Gismatullin, Halupczok, and Simonetta on the following problem: given a henselian valued field of characteristic 0, possibly equipped with analytic structure (in the sense stemming originally from Denef and van den Dries), describe the possibilities for a definable group G in the valued field sort which is definably almost simple, that is, has no proper infinite definable normal subgroups. We also have results for an algebraically closed valued field K in characteristic p, but assuming also that the group is a definable subgroup of GL(n, K).

Tue, 13 Nov 2018
16:00
L5

Projective geometries arising from Elekes-Szabó problems

Martin Bays
(Muenster)
Abstract

I will explain how complex varieties which have asymptotically large intersections with finite grids can be seen to correspond to projective geometries, exploiting ideas of Hrushovski. I will describe how this leads to a precise characterisation of such varieties. Time permitting, I will discuss consequences for generalised sum-product estimates and connections to diophantine problems. This is joint work with Emmanuel Breuillard.

Tue, 06 Nov 2018
16:00
L5

Standard conjectures in model theory, and categoricity of comparison isomorphisms

Misha Gavrilovich
(Higher School of Economics)
Abstract


abstract:

In my talk I shall try to explain the following speculation and present some
evidence in the form of "correlations" between categoricity conjectures in
model theory and motivic conjectures in algebraic geometry.

Transfinite induction constructions developed in model theory are by now
sufficiently developed to be used to build analogues of objects in algebraic
geometry constructed with a choice of topology, such as a singular cohomology theory,
the Hodge decomposition, and fundamental groups of complex algebraic varieties.
Moreover, these algebraic geometric objects are often conjectured to satisfy
homogeneity or freeness properties which are true for objects constructed by
transfinite induction.


An example of this is Hrushovski fusion used to build Zilber pseudoexponentiation,
i.e. a group homomorphism  ex:C+C which satisfies Schanuel conjecture,
a transcendence property analogous to Grothendieck conjecture on periods.


I shall also present a precise conjecture on "uniqueness" of Q-forms (comparison isomorphisms)
of complex etale cohomology, and will try to explain its relation to conjectures on l-adic
Galois representations coming from the theory of motivic Galois group.
 

Subscribe to