Mon, 22 Oct 2018

14:15 - 15:15
L4

Uncollapsing highly collapsed $G_2$ holonomy metrics.

Mark Haskins
(Bath)
Abstract

In recent joint work with Lorenzo Foscolo and Johannes Nordstr\”om we gave an analytic construction of large families of complete circle-invariant $G_2$
holonomy metrics on the total space of circle bundles over a complete noncompact Calabi—Yau 3-fold with asymptotically conical geometry. The
asymptotic models for the geometry of these $G_2$ metrics are circle bundles with fibres of constant length $l$, so-called asymptotically local conical
(ALC) geometry. These ALC $G_2$ metrics can Gromov—Hausdorff collapse with bounded curvature to the given asymptotically conical Calabi—Yau 3-fold as the fibre length $l$ goes to $0$. A natural question is: what happens to these families of $G_2$ metrics as we try to make $l$ large? In general the answer to this question is not known, but in cases with sufficient symmetry we have recently been able to give a complete picture.  

We give an overview of all these results and discuss some analogies with the class of asymptotically locally flat (ALF) hyperkaehler 4-manifolds. In
particular we suggest that a particular $G_2$ metric we construct should be regarded as a $G_2$ analogue of the Euclidean Taub—NUT metric on the complex plane.

Mon, 15 Oct 2018

14:15 - 15:15
L4

On Controllability of Waves and Geometric Carleman Estimates

Arick Shao
(QMUL)
Abstract

In this talk, we consider the question of exact (boundary) controllability of wave equations: whether one can steer their solutions from any initial state to any final state using appropriate boundary data. In particular, we discuss new and fully general results for linear wave equations on time-dependent domains with moving boundaries. We also discuss the novel geometric Carleman estimates that are the main tools for proving these controllability results

Mon, 08 Oct 2018

14:15 - 15:15
L4

Moment maps and non-reductive geometric invariant theory

Frances Kirwan
(Oxford)
Abstract
When a complex reductive group acts linearly on a projective variety, the GIT quotient can be identified with an appropriate symplectic quotient. The aim of this talk is to discuss an analogue of this description for GIT quotients by suitable non-reductive actions. In general GIT for non-reductive linear algebraic group actions is much less well behaved than for reductive actions. However when the unipotent radical U of a linear algebraic group is graded, in the sense that a Levi subgroup has a central one-parameter subgroup which acts by conjugation on U with all weights strictly positive, then GIT for a linear action of the group on a projective variety has better properties than in the general case, and (at least under some additional conditions) we can ask for moment map descriptions of the quotients.
Analytical estimates of proton acceleration in laser-produced turbulent
plasmas
Beyer, K Reville, B Bott, A Park, H Sarkar, S Gregori, G Journal of Plasma Physics volume 84 issue 6 (19 Nov 2018) http://arxiv.org/abs/1808.04356v1
Evidence for anisotropy of cosmic acceleration
Colin, J Mohayaee, R Rameez, M Sarkar, S Astronomy and Astrophysics: a European journal (20 Nov 2019) http://arxiv.org/abs/1808.04597v3
Thu, 29 Nov 2018

16:00 - 17:30
L4

tba

tba
Thu, 08 Nov 2018

16:00 - 17:30
L4

On fully-dynamic risk-indifference pricing: time-consistency and other properties

Giulia Di Nunno
Abstract

Risk-indifference pricing is proposed as an alternative to utility indifference pricing, where a risk measure is used instead of a utility based preference. In this, we propose to include the possibility to change the attitude to risk evaluation as time progresses. This is particularly reasonable for long term investments and strategies. 

Then we introduce a fully-dynamic risk-indifference criteria, in which a whole family of risk measures is considered. The risk-indifference pricing system is studied from the point of view of its properties as a convex price system. We tackle questions of time-consistency in the risk evaluation and the corresponding prices. This analysis provides a new insight also to time-consistency for ordinary dynamic risk-measures.

Our techniques and results are set in the representation and extension theorems for convex operators. We shall argue and finally provide a setting in which fully-dynamic risk-indifference pricing is a well set convex price system.

The presentation is based on joint works with Jocelyne Bion-Nadal.

Subscribe to