Wed, 31 May 2017
15:00

Hash Proof Systems over Lattices Revisited

Olivier Blazy
(Université de Limoges)
Abstract

Hash Proof Systems or Smooth Projective Hash Functions (SPHFs) are a
form of implicit arguments introduced by Cramer and Shoup at
Eurocrypt’02. They have found many applications since then, in
particular for authenticated key exchange or honest-verifier
zero-knowledge proofs. While they are relatively well understood in
group settings, they seem painful to construct directly in the lattice
setting.
Only one construction of an SPHF over lattices has been proposed, by
Katz and Vaikuntanathan at Asiacrypt’09. But this construction has an
important drawback: it only works for an ad-hoc language of ciphertexts.
Concretely, the corresponding decryption procedure needs to be tweaked,
now requiring q many trapdoor inversion attempts, where q is the modulus
of the underlying Learning With Error (LWE) problem.
Using harmonic analysis, we explain the source of this limitation, and
propose a way around it. We show how to construct SPHFs for standard
languages of LWE ciphertexts, and explicit our construction over a
tag-CCA2 encryption scheme à la Micciancio-Peikert (Eurocrypt’12).

If there is enough time, we will conclude with applications of these
SPHFs to password-authenticated key exchange, honest-verifier
zero-knowledge and a variant of witness encryption.

Tue, 31 Jan 2017
14:30
L6

Increasing Sequences of Integer Triples

Jason Long
(Cambridge University)
Abstract

We will consider the following deceptively simple question, formulated recently by Po Shen Loh who connected it to an open problem in Ramsey Theory. Define the '2-less than' relation on the set of triples of integers by saying that a triple x is 2-less than a triple y if x is less than y in at least two coordinates. What is the maximal length of a sequence of triples taking values in {1,...,n} which is totally ordered by the '2-less than' relation?

In his paper, Loh uses the triangle removal lemma to improve slightly on the trivial upper bound of n^2, and conjectures that the truth should be of order n^(3/2). The gap between these bounds has proved to be surprisingly resistant. We shall discuss joint work with Tim Gowers, giving some developments towards this conjecture and a wide array of natural extensions of the problem. Many of these extensions remain open.
 

Think of a mathematician and you might imagine an isolated individual fueled by coffee whose immaculate if incomprehensible papers may, in the fullness of time, via a decades-long dry chain of citations, be made use of by an industrialist (via one or two other dedicated mathematicians).

Fri, 10 Mar 2017
14:15
C3

TBC

Fri, 24 Feb 2017
14:15
C3

Ice sheet runoff and Dansgaard-Oeschger cycles

Ian Hewitt
(Oxford)
Abstract

Many northern hemisphere climate records show a series of rapid climate changes - Dansgaard-Oesgher (D-O) cycles - that recurred on centennial to millennial timescales throughout most of the last glacial period.  They consist of sudden warming jumps of order 10°C, followed generally by a slow cooling lasting a few centuries, and then a rapid temperature drop into a cold period of similar length.  Most explanations for D-O events call on changes in the strength of the Atlantic meridional overturning circulation (AMOC), but the mechanism for triggering and pacing such changes is uncertain. Changes in freshwater delivery to the ocean are assumed to be important. 

Here, we investigate whether the proposed AMOC changes could have occurred as part of a natural relaxation oscillation, in which runoff from the northern hemisphere ice sheets varies in response to each warming and cooling event, and in turn provides the freshwater delivery that controls the ocean circulation.  In this mechanism the changes are buffered and paced by slow changes in salnity of the Arctic ocean.  We construct a simple model to investigate whether the timescales and magnitudes make this a viable mechanism.  

Fri, 27 Jan 2017
14:15
C3

Moffatt eddies in valleys beneath ice sheets

Colin Meyer
(Harvard University)
Abstract

Radar data from both Greenland and Antarctica show folds and other disruptions to the stratigraphy of the deep ice. The mechanisms by which stratigraphy deforms are related to the interplay between ice flow and topography. Here we show that when ice flows across valleys or overdeepenings, viscous overturnings called Moffatt eddies can develop. At the base of a subglacial valley, the shear on the valley walls is transfered through the ice, forcing the ice to overturn. To understand the formation of these eddies, we numerically solve the non-Newtonian Stokes equations with a Glen's law rheology to determine the critical valley angle for the eddies to form. The decrease in ice viscosity with shear enhances shear localization and, therefore, Moffatt eddies form in smaller valley angles (steeper slopes) than in a fluid that does not localize shear, such as a Newtonian fluid. When temperature is incorporated into the ice rheology, the warmer basal ice is less viscous and eddies form in larger valley angles (shallower slopes) than in isothermal ice. We apply our simulations to the Gamburtsev Subglacial Mountains and solve for the ice flow over radar-determined topography. These simulations show Moffatt eddies on the order of 100 meters tall in the deep subglacial valleys.

Tue, 21 Feb 2017

14:15 - 15:15
L4

Growth, generation, and conjectures of Gowers and Viola

Aner Shalev
(Hebrew University of Jerusalem)
Abstract

I will discuss recent results in finite simple groups. These include growth, generation (with a number theoretic flavour), and conjectures of Gowers and Viola on mixing and complexity whose proof requires representation theory as a main tool.
 

Fri, 03 Mar 2017

10:00 - 11:00
N3.12

Geometric properties related to Beilinson-Bernstein localisation

Richard Mathers
(University of Oxford)
Abstract

In recent years, Ardakov and Wadsley have been interested in extending the classical theory of Beilinson-Bernstein localisation to different contexts. The classical proof relies on fundamental geometric properties of the dual nilcone of a semisimple Lie algebra; in particular, finding a nice desingularisation of the nilcone and demonstrating that it is normal. I will attempt to explain the relationship between these properties and the proof, and discuss some areas of my own work, which focuses on proving analogues of these results in the case where the characteristic of the ground field K is bad.

Fri, 17 Feb 2017

10:00 - 11:00
N3.12

On certain hyperplane arrangements and nilpotent orbits of complex simple Lie algebras

Marcelo De Martino
(University of Oxford)
Abstract

In this talk, I wish to address the problem of evaluating an integral on an n-dimensional complex vector space whose n-form of integration has poles along a union of (affine) hyperplanes, following the work of Heckman and Opdam. Such situation arise often in the harmonic analysis of a reductive group and when that is the case, the singular hyperplane arrangement in question is dictated by the root system of the group. I will then try to explain how we can relate the intersection lattice of the hyperplane arrangement with nilpotent orbits of a complex Lie algebra related to the root system in question.

Subscribe to