Mon, 27 Feb 2017

14:15 - 15:15
L4

Singularities of Lagrangian Mean Curvature Flow

Yng-Ing Lee
(National Taiwan University (visiting Oxford))
Abstract

Mean Curvature Flow (MCF) is a canonical way to deform sub-manifolds to minimal sub-manifolds. It also improves the geometric properties of sub-manifolds along the flow. The condition of being Lagrangian is preserved for smooth solutions of MCF in a Kahler-Einstein manifold. We call it Lagrangian mean curvature flow (LMCF) when requires slices of the flow to be Lagrangian.

Unfortunately, singularities may occur and cause obstructions to continue MCF in general. It is thus very important to understand the singularities, particularly isolated singularities of the flow. Isolated singularity models on soliton solutions that include self-similar solutions and translating solutions. In this talk, I will report some of my work with my collaborators on studying singularities of LMCF. It includes soliton solutions with different important properties and an in-progress joint project with Dominic Joyce that aims to understand how singularities form and construct examples to demonstrate these behaviours.

 

Mon, 20 Feb 2017

14:15 - 15:15
L4

The symplectic geometry of twistor spaces

Joel Fine
(Universite Libre de Bruxelles)
Abstract

Twistor spaces were originally devised as a way to use techniques of complex geometry to study 4-dimensional Riemannian manifolds. In this talk I will show that they also make it possible to apply techniques from symplectic geometry.  In the first part of the talk I will explain that when the 4-manifold satisfies a certain curvature inequality, its twistor space carries a natural symplectic structure. In the second part of the talk I will discuss some results in Riemannian geometry which can be proved via the symplectic geometry of the twistor space. Finally, if there is time, I will end with some speculation
about potential future applications, involving Poincaré—Einstein 4-manifolds, minimal surfaces and distinguished closed curves in their conformal infinities

Mon, 13 Feb 2017

14:15 - 15:15
L4

Gauge Theory and Symplectic Duality

Matt Bullimore
(Oxford)
Abstract

Symplectic duality is an equivalence of mathematical structures associated to pairs of hyper-Kahler cones. All known examples arise as the `Higgs branch’ and `Coulomb branch' of a 3d superconformal quantum field theory. In particular, there is a rich class of examples where the Higgs branch is a Nakajima quiver variety and the Coulomb branch is a moduli spaceof singular magnetic monopoles. In this case, I will show that the equivariant cohomology of the moduli space of based quasi-maps to the Higgs branch transforms as a Verma module for the deformation quantisation of the Coulomb branch

Mon, 30 Jan 2017

14:15 - 15:15
L4

Quivers, Dessins and Calabi-Yau

Yang-hui He
(City University London)
Abstract

We discuss how bipartite graphs on Riemann surfaces encapture a wealth of information about the physics and the mathematics of gauge theories. The
correspondence between the gauge theory, the underlying algebraic geometry of its space of vacua, the combinatorics of dimers and toric varieties, as
well as the number theory of dessin d'enfants becomes particularly intricate under this light.

Mon, 23 Jan 2017

14:15 - 15:15
L4

Moduli spaces of unstable curves

Frances Kirwan
(Oxford)
Abstract

The construction of the moduli spaces of stable curves of fixed genus is one of the classical applications of Mumford's geometric invariant theory (GIT).  Here a projective curve is stable if it has only nodes as singularities and its automorphism group is finite. Methods from non-reductive GIT allow us to classify the singularities of unstable curves in such a way that we can construct moduli spaces of unstable curves of fixed singularity type.

Mon, 16 Jan 2017

14:15 - 15:15
L4

Invariants and moduli revisited: the case of a single root

Brent Doran
Abstract

What is the correct combinatorial object to encode a linear representation?  Many shadows of this problem have been studied:moment polytopes, Duistermaat-Heckman measures, Okounkov bodies.  We suggest that already in very simple cases these miss a crucial feature.  The ring theory, as opposed to just the linear algebra, of the group action on the coordinate ring, depends on some non-trivial lattice geometry and an associated filtration.  Some striking similarities to, and key differences from, the theory of toric varieties ensue.  Finite and non-finite generation phenomena emerge naturally.  We discuss motivations from, and applications to, questions in the effective geometry of moduli of curves.

 

Mon, 06 Feb 2017

14:15 - 15:15
L4

Monopoles and the Sen Conjecture

Michael Singer
(University College London)
Abstract

 The Sen conjecture, made in 1994, makes precise predictions about the existence of L^2 harmonic forms on the monopole moduli spaces. For each positive integer k, the moduli space M_k of monopoles of charge k is a non-compact smooth manifold of dimension 4k, carrying a natural hyperkaehler metric.  Thus studying Sen’s conjectures requires a good understanding of the asymptotic structure of M_k and its metric.  This is a challenging analytical problem, because of the non-compactness of M_k and because its asymptotic structure is at least as complicated as the partitions of k.  For k=2, the metric was written down explicitly by Atiyah and Hitchin, and partial results are known in other cases.  In this talk, I shall introduce the main characters in this story and describe recent work aimed at proving Sen’s conjecture.

Tue, 24 Jan 2017
14:30
L5

On the spectral problem for trivariate functions

Behnam Hashemi
(Mathematical Institute)
Abstract


Using a variational approach applied to generalized Rayleigh functionals, we extend the concepts of singular values and singular functions to trivariate functions defined on a rectangular parallelepiped. We also consider eigenvalues and eigenfunctions for trivariate functions whose domain is a cube. For a general finite-rank trivariate function, we describe an algorithm for computing the canonical polyadic (CP) decomposition, provided that the CP factors are linearly independent in two variables. All these notions are computed using Chebfun. Application in finding the best rank-1 approximation of trivariate functions is investigated. We also prove that if the function is analytic and two-way orthogonally decomposable (odeco), then the CP values decay geometrically, and optimal finite-rank approximants converge at the same rate.
 

Mon, 16 Jan 2017

16:00 - 17:00
L4

A survey of discrete analogues in harmonic analysis

Kevin Hughes
(University of Bristol)
Abstract

In this talk we will motivate and discuss several problems and results in harmonic analysis that involve some arithmetic or discrete structure. We will focus on pioneering work of Bourgain on discrete restriction theorems and pointwise ergodic theorems for arithmetic sets, their modern developments and future directions for the field.

Subscribe to