Compactifications of pseudofinite and pseudoamenable groups
Conant, G Hrushovski, E Pillay, A Groups Geometry and Dynamics (14 Jan 2025)
Mon, 20 Jan 2025

13:00 - 14:00
L6

Symmetry Enhancement, SPT Absorption, and Duality in QED_3

Andrea Antinucci
Abstract

Abelian gauge theories in 2+1 dimensions are very interesting QFTs: they are strongly coupled and exhibit non-trivial dynamics. However, they are somewhat more tractable than non-Abelian theories in 3+1 dimensions. In this talk, I will first review the known properties of fermions in 2+1 dimensions and some conjectures about QED_3 with a single Dirac fermion. I will then present the recent proposal from [arXiv:2409.17913] regarding the phase diagram of QED_3 with two fermions. The findings reveal surprising (yet compelling) features: while semiclassical analysis would suggest two trivially gapped phases and a single phase transition, the actual dynamics indicate the presence of two distinct phase transitions separated by a "quantum phase." This intermediate phase exists over a finite range of parameters in the strong coupling regime and is not visible semiclassically. Moreover, these phase transitions are second-order and exhibit symmetry enhancement. The proposal is supported by several non-trivial checks and is consistent with results from numerical bootstrap, lattice simulations, and extrapolations from the large-Nf expansion.

Propagation of chaos for multi-species moderately interacting particle
systems up to Newtonian singularity
Carrillo, J Guo, S Holzinger, A (06 Jan 2025) http://arxiv.org/abs/2501.03087v1
Tue, 17 Jun 2025
15:30
L4

Quivers and curves in higher dimensions

Hulya Arguz
(University of Georgia)
Abstract

Quiver Donaldson-Thomas invariants are integers determined by the geometry of moduli spaces of quiver representations. I will describe a correspondence between quiver Donaldson-Thomas invariants and Gromov-Witten counts of rational curves in toric and cluster varieties. This is joint work with Pierrick Bousseau.

Mon, 16 Jun 2025
14:15
L5

BPS polynomials and Welschinger invariants

Pierrick Bousseau
(University of Georgia)
Abstract
For any smooth projective surface $S$, we introduce BPS polynomials — Laurent polynomials in a formal variable $q$ — derived from the higher genus Gromov–Witten theory of the 3-fold $S \times {\mathbb P}^1$. When $S$ is a toric del Pezzo surface, we prove that these polynomials coincide with the Block–Göttsche polynomials defined in terms of tropical curve counts. Beyond the toric case, we conjecture that for surfaces $S_n$ obtained by blowing up ${\mathbb P}^2$ at $n$ general points, the evaluation of BPS polynomials at $q=-1$ yields Welschinger invariants, given by signed counts of real rational curves. We verify a relative version of this conjecture for all the surfaces $S_n$, and prove the main conjecture for n less than or equal to 6. This establishes a surprising link between real and complex curve enumerations, going via higher genus Gromov-Witten theory. Additionally, we propose a conjectural relationship between BPS polynomials and refined Donaldson–Thomas invariants. This is joint work with Hulya Arguz.



 

Thu, 23 Jan 2025
13:00
N3.12

Aspects of anomalies - Part 2

Alison Warman
Abstract

Anomalies in quantum systems are present when a classical symmetry is broken by quantum effects. They give rise to physical predictions and constraints. This talk will focus on the mathematical features of anomalies of continuous, ordinary, symmetries. In the first part, we will review the topological nature of anomalies, in particular the connection to the Atiyah-Singer index theorem and its non-perturbative path-integral computation by Fujikawa. We will then discuss how anomalies and their associated (topological) Chern-Simons polynomials are related to BRST cohomology via the Stora-Zumino chain of descent equations, explaining the connection to the two-step descent procedure reviewed in the talk by Alice Lüscher last term.

 

Junior Strings is a seminar series where DPhil students present topics of common interest that do not necessarily overlap with their own research area. This is primarily aimed at PhD students and post-docs but everyone is welcome.

An Asymptotic Analysis of Bivalent Monoclonal Antibody-Antigen Binding
Heirene, L Byrne, H Yates, J Gaffney, E (16 Jan 2025)
Myths around quantum computation before full fault tolerance: What no-go theorems rule out and what they don't
Zimborás, Z Koczor, B Holmes, Z Borrelli, E Gilyén, A Huang, H Cai, Z Acín, A Aolita, L Banchi, L Brandão, F Cavalcanti, D Cubitt, T Filippov, S García-Pérez, G Goold, J Kálmán, O Kyoseva, E Rossi, M Sokolov, B Tavernelli, I Maniscalco, S (09 Jan 2025)
Subscribe to