Wed, 14 Oct 2015
16:00
C2

tba

Robin Knight
(Oxford)
Tue, 20 Oct 2015

12:00 - 13:30
L4

Recent progress in Ambitwistor strings

Yvonne Geyer
(Oxford)
Abstract

New ambitwistor string models are presented for a variety of theories and older models are shown to work at 1 loop and perhaps higher using a simpler formulation on the Riemann sphere.

Wed, 14 Oct 2015

11:00 - 12:30
N3.12

Properties of random groups.

Rob Kropholler
(Oxford)
Abstract

Many people talk about properties that you would expect of a group. When they say this they are considering random groups, I will define what it means to pick a random group in one of many models and will give some properties that these groups will have with overwhelming probability. I will look at the proof of some of these results although the talk will mainly avoid proving things rigorously.

Tue, 10 Nov 2015

15:45 - 16:45
L4

The spectrum of the inertia operator on the motivic Hall algebra

Kai Behrend
(UBC Vancouver)
Abstract

Following an idea of Bridgeland, we study the operator on the K-group of algebraic stacks, which takes a stack to its inertia stack.  We prove that the inertia operator is diagonalizable when restricted to nice enough stacks, including those with algebra stabilizers.  We use these results to prove a structure theorem for the motivic Hall algebra of a projective variety, and give a more conceptual definition of virtually indecomposable stack function.  This is joint work with Pooya Ronagh.

Tue, 20 Oct 2015

15:45 - 16:45
L4

Generating the Fukaya categories of Hamiltonian G-manifolds

Yanki Lekili
(King's College London)
Abstract

Let $G$ be a compact Lie group and $k$ be a field of characteristic $p\ge 0$ such that $H^*(G)$ does not have $p$-torsion. We show that a free Lagrangian orbit of a Hamiltonian $G$-action on a compact, monotone, symplectic manifold $X$ split-generates an idempotent summand of the monotone Fukaya category over $k$ if and only if it represents a non-zero object of that summand. Our result is based on: an explicit understanding of the wrapped Fukaya category through Koszul twisted complexes involving the zero-section and a cotangent fibre; and a functor canonically associated to the Hamiltonian $G$-action on $X$. Several examples can be studied in a uniform manner including toric Fano varieties and certain Grassmannians. 

Subscribe to