Mon, 26 Oct 2015

12:00 - 13:00
L5

Generalising Calabi-Yau for generic flux backgrounds

Anthony Ashmore
(Imperial College)
Abstract

Calabi-Yau manifolds without flux are perhaps the best-known
supergravity backgrounds that leave some supersymmetry unbroken. The
supersymmetry conditions on such spaces can be rephrased as the
existence and integrability of a particular geometric structure. When
fluxes are allowed, the conditions are more complicated and the
analogue of the geometric structure is not well understood.

In this talk, I will define the analogue of Calabi-Yau geometry for
generic D=4, N=2 backgrounds with flux in both type II and
eleven-dimensional supergravity. The geometry is characterised by a
pair of G-structures in 'exceptional generalised geometry' that
interpolate between complex, symplectic and hyper-Kahler geometry.
Supersymmetry is then equivalent to integrability of the structures,
which appears as moment maps for diffeomorphisms and gauge
transformations. Similar structures also appear in D=5 and D=6
backgrounds with eight supercharges.

As a simple application, I will discuss the case of AdS5 backgrounds
in type IIB, where deformations of these geometric structures give
exactly marginal deformations of the dual field theories.

 
 
Wed, 14 Oct 2015

10:00 - 11:00
L4

Center of quiver Hecke algebras and cohomology of quiver varieties

Prof. Peng Shan
Abstract

I will explain how to relate the center of a cyclotomic quiver Hecke algebras to the cohomology of Nakajima quiver varieties using a current algebra action. This is a joint work with M. Varagnolo and E. Vasserot.
 

Wed, 18 Nov 2015
16:00
C1

Counter example using the Golod-Shafarevich inequality

Kieran Calvert
(Oxford)
Abstract

In 1964 Golod and Shafarevich discovered a powerful tool that gives a criteria for when a certain presentation defines an infinite dimensional algebra. In my talk I will assume the main machinery of the Golod-Shafarevich inequality for graded algebras and use it to provide counter examples to certain analogues of the Burnside problem in infinite dimensional algebras and infinite groups. Then, time dependent, I will define the Tarski number for groups relating to the Banach-Tarski paradox and show that we can using the G-S inequality show that the set of Tarski numbers is unbounded. Despite the fact we can only find groups of Tarski number 4, 5 and 6.

Wed, 17 Feb 2016
15:00
L4

The evolution of discrete logarithm in GF(p^n)

Razvan Barbulescu
(CNRS Paris)
Abstract
The security of pairings-based cryptography relies on the difficulty of two problems: computing discrete logarithms over elliptic curves and, respectively, finite fields GF(p^n) when n is a small integer larger than 1. The real-life difficulty of the latter problem was tested in 2006 by a record in a field GF(p^3) and in 2014 and 2015 by new records in GF(p^2), GF(p^3) and GF(p^4). We will present the new methods of polynomial selection which allowed to obtain these records. Then we discuss the difficulty of DLP in GF(p^6) and GF(p^12) when p has a special form (SNFS) for which two theoretical algorithms were presented recently.
Mon, 02 Nov 2015

12:00 - 13:00
L5

Heterotic Superpotentials and Moduli

Eirik Svanes
(Pierre and Marie Curie University)
Abstract
We review some recent progress in computing massless spectra 

and moduli in heterotic string compactifications. In particular, it was   

recently shown that the heterotic Bianchi Identity can be accounted 

for by the construction of a holomorphic operator. Mathematically,

this corresponds to a holomorphic double extension. Moduli can 

then be computed in terms of cohomologies of this operator. We 

will see how the same structure can be derived form a 

Gukov-Vafa-Witten type superpotential. We note a relation between 

the lifted complex structure and bundle moduli, and cover some 

examples, and briefly consider obstructions and Yukawa 

couplings arising from these structures.
 
 
 
 
 
Mon, 23 Nov 2015

12:00 - 13:00
L3

AdS4 solutions of massive IIA from dyonic supergravity and their simple Chern-Simons duals

Oscar Varela
(Harvard)
Abstract

It has been recently pointed out that maximal gauged supergravities in four dimensions often come in one-parameter families. The parameter measures the combination of electric and magnetic vectors that participate in the gauging. I will discuss the higher-dimensional origin of these dyonic gaugings, when the gauge group is chosen to be ISO(7). This gauged supergravity arises from consistent truncation of massive type IIA on the six-sphere, with its dyonically-gauging parameter identified with the Romans mass. The (AdS) vacua of the 4D supergravity give rise to new explicit AdS4 backgrounds of massive type IIA. I will also show that the 3D field theories dual to these AdS4 solutions are Chern-Simons-matter theories with a simple gauge group and level k also given by the Romans mass.

 
Mon, 19 Oct 2015

12:00 - 13:00
L5

From special geometry to Nernst branes

Thomas Mohaupt
(Liverpool)
Abstract
Dimensional reduction over time is a useful method for constructing stationary solutions in supergravity, both extremal and non-extremal. For theories with N=2 vector multiplets one can in addition exploit the special Kahler geometry encoding the couplings. I will explain why aformulation in terms of real coordinates and a Hesse potential is useful, and how special Kahler geometry is related to
para-quaternionic Kahler geometry by dimensional reduction. As an application I will present the construction of black brane solutions with vanishing entropy density at zero temperature (`Nernst branes') in FI-gauged N=2 supergravity in four and five dimensions.
 
 
Mon, 12 Oct 2015

12:00 - 13:00
L5

Supersymmetric Defects in 3d/3d

Masahito Yamazaki
(IPMU)
Abstract

The 3d/3d correspondence is about the correspondence between 3d N=2 supersymmetric gauge theories and the 3d complex Chern-Simons theory on a 3-manifold.

In this talk I will describe codimension 2 and 4 supersymmetric defects in this correspondence, by a combination of various existing techniques, such as state-integral models, cluster algebras, holographic dual, and 5d SYM.

 
 
 
Thu, 29 Oct 2015

14:00 - 15:00
L4

Classifying $A_{\mathfrak{q}}(\lambda)$ modules by their Dirac cohomology

Pavle Pandzic
(University of Zagreb)
Abstract

We will briefly review the notions of Dirac cohomology and of $A_{\mathfrak{q}}(\lambda)$ modules of real reductive groups, and recall a formula for the Dirac cohomology of an $A_{\mathfrak{q}}(\lambda)$ module. Then we will discuss to what extent an $A_{\mathfrak{q}}(\lambda)$ module is determined by its Dirac cohomology. This is joint work with Jing-Song Huang and David Vogan.

Subscribe to