Mon, 30 Nov 2015

15:00 - 16:00
Oxford-Man Institute

Higher order theory for renewal sequences with infinite mean.

DALIA TERHESIU
(University of Exeter)
Abstract

Abstract: First order asymptotic of scalar renewal sequences with infinite mean characterized by regular variation has been classified in the 60's (Garsia and Lamperti). In the recent years, the question of higher order asymptotic for renewal sequences with infinite mean was motivated by obtaining 'mixing rates' for dynamical systems with infinite measure. In this talk I will present the recent results we have obtained on higher order asymptotic for renewal sequences with infinite mean and their consequences for error rates in certain limit theorems (such as arcsine law for null recurrent Markov processes).

Mon, 30 Nov 2015

15:45 - 16:45
Oxford-Man Institute

TBC

KHALIL CHOUK
(Bonn University)
Abstract

TBC

Mon, 23 Nov 2015

15:45 - 16:45
Oxford-Man Institute

Rough paths on manifolds revisited

CHRISTIAN LITTERER
(University of York)
Abstract


Abstract: We consider different notions of rough paths on manifolds and study some of the relations between these definitions. Furthermore, we explore extensions to manifolds modelled along infinite dimensional Banach spaces.

Mon, 23 Nov 2015

14:15 - 15:15
Oxford-Man Institute

Random walks and Lévy processes as rough paths

ILYA CHEVYREV
(University of Oxford)
Abstract

Abstract: We consider random walks and Lévy processes in the free nilpotent Lie group as rough paths. For any p > 1, we completely characterise (almost) all Lévy processes whose sample paths have finite p-variation, provide a Lévy-Khintchine formula for the characteristic function of the signature of a Lévy process treated as a rough path, and give sufficient conditions under which a sequence of random walks converges weakly to a Lévy process in rough path topologies. At the heart of our analysis is a criterion for tightness of p-variation for a collection of càdlàg strong Markov processes. We demonstrate applications of our results to weak convergence of stochastic flows.

Mon, 09 Nov 2015

15:45 - 16:45
Oxford-Man Institute

: Gradient estimates for Brownian bridges to submanifolds

JAMES THOMPSON
(University of Warwick)
Abstract

Abstract: A diffusion process on a Riemannian manifold whose generator is one half of the Laplacian is called a Brownian motion. The mean local time of Brownian motion on a hypersurface will be considered, as will the situation in which a Brownian motion is conditioned to arrive in a fixed submanifold at a fixed positive time. Doing so provides motivation for the remainder of the talk, in which a probabilistic formula for the integral of the heat kernel over a submanifold is proved and used to deduce lower bounds, an asymptotic relation and derivative estimates applicable to the conditioned process.

 

Mon, 09 Nov 2015

14:15 - 15:15
Oxford-Man Institute

Tightness and duality of martingale transport on the Skorokhod space

TAN XIAOLU
(University of Paris Dauphine)
Abstract

Abstract: The martingale optimal transport aims to optimally transfer a probability measure to another along the class of martingales. This problem is mainly motivated by the robust superhedging of exotic derivatives in financial mathematics, which turns out to be the corresponding Kantorovich dual. In this paper we consider the continuous-time martingale transport on the Skorokhod space of cadlag paths. Similar to the classical setting of optimal transport, we introduce different dual problems and establish the corresponding dualities by a crucial use of the S-topology and the dynamic programming principle. This is a joint work with Gaoyue Guo and Nizar Touzi.

Mon, 02 Nov 2015

15:45 - 16:45
Oxford-Man Institute

: Pfaffians, 1-d particle systems and random matrices.

ROGER TRIBE
(University of Warwick)
Abstract

Abstract: Joint work with Oleg Zaboronsky (Warwick).

Some one dimensional nearest neighbour particle systems are examples of Pfaffian point processes - where all intensities are determined by a single kernel.In some cases these kernels have appeared in the random matrix literature (where the points are the positions of eigenvalues). We are attempting to use random matrix tools on the particle sytems, and particle tools on the random matrices.

 

 

Mon, 02 Nov 2015

14:15 - 15:15
Oxford-Man Institute

Longest increasing path within the critical strip

MATHEW JOSEPH
((University of Sheffield))
Abstract

Abstract:   Consider the square $[0,n]^2$ with points from a Poisson point process of intensity 1 distributed within it. In a seminal work, Baik, Deift and Johansson proved that the number of points $L_n$ (length) on a maximal increasing path (an increasing path that contains the most number of points), when properly centered and scaled, converges to the Tracy-Widom distribution. Later Johansson showed that all maximal paths lie within the strip of width $n^{\frac{2}{3} +\epsilon}$ around the diagonal with probability tending to 1 as $n \to \infty$. We shall discuss recent work on the Gaussian behaviour of the length $L_n^{(\gamma)}$ of a maximal increasing path restricted to lie within a strip of width $n^{\gamma}, \gamma< \frac{2}{3}$.

 

Mon, 26 Oct 2015

15:45 - 16:45
Oxford-Man Institute

TBC

JASON PETER MILLER
(MIT, USA)
Abstract

TBC

Mon, 26 Oct 2015

14:15 - 15:45
Oxford-Man Institute

An adaptive inference algorithm for integral of one form along rough paths

NI HAO
(University of Oxford)
Abstract

We consider a controlled system, in which an input $X: [0, T] \rightarrow E:= \mathbb{R}^{d}$ is a continuous but potentially highly oscillatory path and the corresponding output $Y$ is the line integral along $X$, for some unknown function $f: E \rightarrow E$. The rough paths theory provides a general framework to answer the question on which mild condition of $X$ and $f$, the integral $I(X)$ is well defined. It is robust enough to allow to treat stochastic integrals in a deterministic way. In this paper we are interested in identification of controlled systems of this type. The difficulty comes from the high dimensionality caused by the input of a function type. We propose novel adaptive and non-parametric algorithms to learn the functional relationship between the  input and the output from the data by carefully choosing the feature set of paths based on the rough paths theory and applying linear regression techniques. The algorithms is demonstrated on a financial application where the task is to predict the P$\&$L of the unknown trading strategy.

Subscribe to