Wed, 03 Dec 2014
12:30
N3.12

The Banach-Tarski paradox

Federico Vigolo
(Oxford University)
Abstract

The Banach-Tarski paradox is a celebrated result showing that, using the axiom of choice, it is possible to deconstruct a ball into finitely many pieces that may be rearranged to build two copies of that ball. In this seminar we will sketch the proof of the paradox trying to emphasize the key ideas.
 

Mon, 19 Jan 2015

17:00 - 18:00
L4

Carleman Estimates and Unique Continuation for Fractional Schroedinger Equations

Angkana Ruland
(University of Oxford)
Abstract
In this talk I present Carleman estimates for fractional Schroedinger
equations and discuss how these imply the strong unique continuation
principle even in the presence of rough potentials. Moreover, I show how
they can be used to derive quantitative unique continuation results in
the setting of compact manifolds. These quantitative estimates can then
be exploited to deduce upper bounds on the Hausdorff dimension of nodal
domains (of eigenfunctions to the investigated Dirichlet-to-Neumann maps).
Mon, 09 Feb 2015

17:00 - 18:00
L4

Global existence of solutions of the Ericksen-Leslie system for the Oseen-Frank model

Min-Chun Hong
(The University of Queensland)
Abstract

The dynamic flow of liquid crystals is described by the Ericksen-Leslie system. The Ericksen-Leslie system is a system of  the Navier-Stokes equations coupled with the gradient flow for the Oseen-Frank model,   which generalizes the heat flow for harmonic maps  into the $2$-sphere.   In this talk, we will outline a proof of global existence of solutions of the Ericksen-Leslie system for a general Oseen-Frank  model in 2D.

Mon, 02 Mar 2015

17:00 - 18:00
L4

Kinetic formulation for vortex vector fields

Radu Ignat
(Université Toulouse 3)
Abstract

We will focus on vortex gradient fields of unit-length. The associated stream function solves the eikonal equation, more precisely it is the distance function to a point. We will prove a kinetic formulation characterizing such vector fields in any dimension.
 

Mon, 09 Mar 2015

17:00 - 18:00
L4

Sobolev inequalities in arbitrary domains

Andrea Cianchi
(Università degli Studi di Firenze)
Abstract

A theory of Sobolev inequalities in arbitrary open sets in $R^n$ is offered. Boundary regularity of domains is replaced with information on boundary traces of trial functions and of their derivatives up to some explicit minimal order. The relevant Sobolev inequalities involve constants independent of the geometry of the domain, and exhibit the same critical exponents as in the classical inequalities on regular domains. Our approach relies upon new representation formulas for Sobolev functions, and on ensuing pointwise estimates which hold in any open set. This is a joint work with V. Maz'ya.

Tue, 18 Nov 2014

17:00 - 18:00
C2

Commuting probabilities of finite groups

Sean Eberhard
(Oxford)
Abstract

The commuting probability of a finite group is defined to be the probability that two randomly chosen group elements commute. Not all rationals between 0 and 1 occur as commuting probabilities. In fact Keith Joseph conjectured in 1977 that all limit points of the set of commuting probabilities are rational, and moreover that these limit points can only be approached from above. In this talk we'll discuss a structure theorem for commuting probabilities which roughly asserts that commuting probabilities are nearly Egyptian fractions of bounded complexity. Joseph's conjectures are corollaries.

Subscribe to