17:00
Globally valued fields, adelic curves and Siu inequality
Abstract
In this talk, I will introduce the frameworks of globally valued fields (Ben Yaacov-Hrushovski) and adelic curves (Chen-Moriwaki). Both of these frameworks aim at understanding the arithmetic of fields sharing common features with global fields. A lot of examples fit in this scope (e.g. global fields, finitely generated extension of the prime fields, fields of meromorphic functions) and we will try to describe some of them.
Although globally valued fields and adelic curves came from different motivations and might seem quite different, they are related (and even essentially equivalent). This relation opens the door for new methods in the study of global arithmetic. As an application, we will sketch the proof of an arithmetic analogue of Siu inequality in algebraic geometry (a fundamental tool to detect the existence of global sections of line bundles in birational geometry). This is a joint work with Michał Szachniewicz.
17:00
The hierarchy of consistency strengths for membership in a computably enumerable set
Abstract
Simplicial reformulations of basic notions in model theory
Abstract
We shall explain how to represent a couple of basic notions in model theory by standard simplicial diagrams from homotopy theory. Namely, we shall see that the notions of a {definable/invariant type}, {convergence}, and {contractibility} are defined by the same simplicial formula, and so are that of a {complete E-M type} and an {idempotent of an oo-category}. The first reformulation makes precise Hrushovski's point of view that a definable/invariant type is an operation on types rather than a property of a type depending on the choice of a model, and suggests a notion of a type over a {space} of parameters. The second involves the nerve of the category with a single idempotent non-identity morphism, and leads to a reformulation of {non-dividing} somewhat similar to that of lifting idempotents in an oo-category. If time permits, I shall also present simplicial reformulations of distality, NIP, and simplicity.
We do so by associating with a theory the simplicial set of its n-types, n>0. This simplicial set, or rather its symmetrisation, appeared earlier in model theory under the names of {type structure} (M.Morley. Applications of topology to Lw1w. 1974), {type category} (R.Knight, Topological Spaces and Scattered Theories. 2007), {type space functors} (Haykazyan. Spaces of Types in Positive Model Theory. 2019; M.Kamsma. Type space functors and interpretations in positive logic. 2022).
Arbitrary Characteristic