Living with multimorbidity: Medical and lay healthcare approaches
Porter, T Sanders, T Richardson, J Grime, J Ong, B International Journal of Clinical Rheumatology volume 10 issue 2 111-119 (01 Jan 2015)
Thu, 05 Jun 2025
17:00
L3

Globally valued fields, adelic curves and Siu inequality

Antoine Sedillot
(Universität Regensburg)
Abstract

In this talk, I will introduce the frameworks of globally valued fields (Ben Yaacov-Hrushovski) and adelic curves (Chen-Moriwaki). Both of these frameworks aim at understanding the arithmetic of fields sharing common features with global fields. A lot of examples fit in this scope (e.g. global fields, finitely generated extension of the prime fields, fields of meromorphic functions) and we will try to describe some of them.

Although globally valued fields and adelic curves came from different motivations and might seem quite different, they are related (and even essentially equivalent). This relation opens the door for new methods in the study of global arithmetic. As an application, we will sketch the proof of an arithmetic analogue of Siu inequality in algebraic geometry (a fundamental tool to detect the existence of global sections of line bundles in birational geometry). This is a joint work with Michał Szachniewicz.

Thu, 29 May 2025
17:00
L3

The hierarchy of consistency strengths for membership in a computably enumerable set

Joel David Hamkins
(University of Notre Dame)
Abstract
For a given computably enumerable set W, consider the spectrum of assertions of the form n ∈ W. If W is c.e. but not computably decidable, it is easy to see that many of these statements will be independent of PA, for otherwise we could decide W by searching for proofs of n ∉ W. In this work, we investigate the possible hierarchies of consistency strengths that arise. For example, there is a c.e. set Q for which the consistency strengths of the assertions n ∈ Q are linearly ordered like the rational line. More generally, I shall prove that every computable preorder relation on the natural numbers is realized exactly as the hierarchy of consistency strength for the membership statements n∈W of some computably enumerable set W. After this, we shall consider the c.e. preorder relations. This is joint work with Atticus Stonestrom.
Thu, 08 May 2025

11:00 - 12:00
C5

Simplicial reformulations of basic notions in model theory

Misha Gavrilovich
Abstract

We shall explain how to represent a couple of basic notions in model theory by standard simplicial diagrams from homotopy theory. Namely, we shall see that the notions of a {definable/invariant type}, {convergence}, and {contractibility} are defined by the same simplicial formula, and so are that of a {complete E-M type} and an {idempotent of an oo-category}.  The first reformulation makes precise Hrushovski's point of view that a definable/invariant type is an operation on types rather than a property of a type depending on the choice of a model, and suggests a notion of a type over a {space} of parameters. The second involves the nerve of the category with a single idempotent non-identity morphism, and leads to a reformulation of {non-dividing} somewhat similar to that of lifting idempotents in an oo-category. If time permits, I shall also present simplicial reformulations of distality, NIP, and simplicity.

We do so by associating with a theory the simplicial set of its n-types, n>0. This simplicial set, or rather its symmetrisation, appeared earlier in model theory under the names of {type structure}  (M.Morley. Applications of topology to Lw1w. 1974), {type category} (R.Knight, Topological Spaces and Scattered Theories. 2007), {type space functors} (Haykazyan. Spaces of Types in Positive Model Theory. 2019; M.Kamsma. Type space functors and interpretations in positive logic. 2022).

Geometric stability theory
Bays, M Lectures in Model Theory volume 2 29-58 (24 Apr 2018)
Some Definability Results in Abstract Kummer Theory
Bays, M Gavrilovich, M Hils, M (27 Dec 2011)
Quasiminimal structures and excellence
Bays, M Hart, B Hyttinen, T Kesälä, M Kirby, J (06 Oct 2012)
Subscribe to