Thu, 08 May 2025
12:00
C6

Sard properties for polynomial maps in infinite dimension

Daniele Tiberio
(University of Padova)
Abstract

Sard’s theorem asserts that the set of critical values of a smooth map from one Euclidean space to another one has measure zero. A version of this result for infinite-dimensional Banach manifolds was proven by Smale for maps with Fredholm differential. However, when the domain is infinite dimensional and the range is finite dimensional, the result is not true – even under the assumption that the map is “polynomial” – and a general theory is still lacking. In this seminar, I will provide sharp quantitative criteria for the validity of Sard’s theorem in this setting, obtained combining a functional analysis approach with new tools in semialgebraic geometry. As an application, I will present new results on the Sard conjecture in sub-Riemannian geometry. Based on a joint work with A. Lerario and L. Rizzi.

Localized tension-induced giant folding in unstructured elastic sheets
Guo, K Sune Simon, M Kwok, M Hsia, J Liu, M Vella, D Proceedings of the National Academy of Sciences volume 122 issue 20 (12 May 2025)
Tue, 03 Jun 2025
13:00
L2

Finite-temperature quantum topological order in three dimensions

Curt von Keyserlingk
(KCL )
Abstract

We identify a three-dimensional system that exhibits long-range entanglement at sufficiently small but nonzero temperature--it therefore constitutes a quantum topological order at finite temperature. The model of interest is known as the fermionic toric code, a variant of the usual 3D toric code, which admits emergent fermionic point-like excitations. The fermionic toric code, importantly, possesses an anomalous 2-form symmetry, associated with the space-like Wilson loops of the fermionic excitations. We argue that it is this symmetry that imbues low-temperature thermal states with a novel topological order and long-range entanglement. Based on the current classification of three-dimensional topological orders, we expect that the low-temperature thermal states of the fermionic toric code belong to an equilibrium phase of matter that only exists at nonzero temperatures. We conjecture that further examples of topological orders at nonzero temperatures are given by discrete gauge theories with anomalous 2-form symmetries. Our work therefore opens the door to studying quantum topological order at nonzero temperature in physically realistic dimensions.

Tue, 10 Jun 2025
13:00
L1

A new construction of c=1 Virasoro blocks

Andy Neitzke
(Yale)
Abstract

I will describe a new method for constructing conformal blocks for the Virasoro vertex algebra with central charge c=1, by "nonabelianization", relating them to conformal blocks for the Heisenberg algebra on a branched double cover. The construction is joint work with Qianyu Hao. Special cases give rise to formulas for tau-functions and solutions of integrable systems of PDE, such as Painleve I and its higher analogues. The talk will be reasonably self-contained (in particular I will explain what a conformal block is).

New large value estimates for Dirichlet polynomials
Guth, L Maynard, J Annals of Mathematics
Planar chemical reaction systems with algebraic and non-algebraic limit cycles
Craciun, G Erban, R Journal of Mathematical Biology volume 90 issue 6 (22 May 2025)
Tue, 13 May 2025
15:30
L4

Parametrising complete intersections

Jakub Wiaterek
(Oxford)
Abstract

We use Non-Reductive GIT to construct compactifications of Hilbert schemes of complete intersections. We then study ample line bundles on these compactifications in order to construct moduli spaces of complete intersections for certain degree types.

Tue, 10 Jun 2025
15:30
L4

Cohomological Donaldson—Thomas invariants for 3-manifolds

Pavel Safronov
(Edinburgh University)
Abstract
Cohomological Donaldson—Thomas theory associates cohomology groups to various moduli spaces in algebraic geometry, such as the moduli space of coherent sheaves on a Calabi—Yau 3-fold. In this talk I will explain some recent results on cohomological DT invariants in the setting of a real 3-manifold $M$. In terms of string theory it corresponds to counting D3 branes in the compactification of a type IIB string theory on $T^* M$. This setting of DT theory is particularly interesting due to its connections to topology (via skein modules), geometric representation theory (geometric Langlands program), and mathematical physics (analytic continuation of Chern—Simons theory). This talk is based on papers joint with Gunningham, Kinjo, Naef, and Park.



 

On p -refined Friedberg–Jacquet integrals and the classical symplectic locus in the GL 2 n eigenvariety
Barrera Salazar, D Graham, A Williams, C Research in Number Theory volume 11 issue 2 (25 Apr 2025)
Tue, 29 Apr 2025
15:30
L4

On the birational geometry of algebraically integrable foliations

Paolo Cascini
(Imperial College London)
Abstract

I will review recent progress on extending the Minimal Model Program to algebraically integrable foliations, focusing on applications such as the canonical bundle formula and recent results toward the boundedness of Fano foliations.

Subscribe to