In this Oxford Mathematics Public Lecture Gábor Domokos uses the geometric theory of tilings to describe natural patterns ranging from nanoscale to planetary scale, appearing in physics, biology, and geology and will introduce a new class of shapes called soft cells, which appear in both living and non-living nature.
Optimal random sampling for approximation with non-orthogonal bases
Abstract
Cubic-quartic regularization models for solving polynomial subproblems in third-order tensor methods
Abstract
High-order tensor methods for solving both convex and nonconvex optimization problems have recently generated significant research interest, due in part to the natural way in which higher derivatives can be incorporated into adaptive regularization frameworks, leading to algorithms with optimal global rates of convergence and local rates that are faster than Newton's method. On each iteration, to find the next solution approximation, these methods require the unconstrained local minimization of a (potentially nonconvex) multivariate polynomial of degree higher than two, constructed using third-order (or higher) derivative information, and regularized by an appropriate power of the change in the iterates. Developing efficient techniques for the solution of such subproblems is currently, an ongoing topic of research, and this talk addresses this question for the case of the third-order tensor subproblem. In particular, we propose the CQR algorithmic framework, for minimizing a nonconvex Cubic multivariate polynomial with Quartic Regularisation, by sequentially minimizing a sequence of local quadratic models that also incorporate both simple cubic and quartic terms.
The role of the cubic term is to crudely approximate local tensor information, while the quartic one provides model regularization and controls progress. We provide necessary and sufficient optimality conditions that fully characterise the global minimizers of these cubic-quartic models. We then turn these conditions into secular equations that can be solved using nonlinear eigenvalue techniques. We show, using our optimality characterisations, that a CQR algorithmic variant has the optimal-order evaluation complexity of $O(\epsilon^{-3/2})$ when applied to minimizing our quartically-regularised cubic subproblem, which can be further improved in special cases. We propose practical CQR variants that judiciously use local tensor information to construct the local cubic-quartic models. We test these variants numerically and observe them to be competitive with ARC and other subproblem solvers on typical instances and even superior on ill-conditioned subproblems with special structure.
Reducing acquisition time and radiation damage: data-driven subsampling for spectromicroscopy
Abstract
Spectro-microscopy is an experimental technique with great potential to science challenges such as the observation of changes over time in energy materials or environmental samples and investigations of the chemical state in biological samples. However, its application is often limited by factors like long acquisition times and radiation damage. We present two measurement strategies that significantly reduce experiment times and applied radiation doses. These strategies involve acquiring only a small subset of all possible measurements and then completing the full data matrix from the sampled measurements. The methods are data-driven, utilizing spectral and spatial importance subsampling distributions to select the most informative measurements. Specifically, we use data-driven leverage scores and adaptive randomized pivoting techniques. We explore raster importance sampling combined with the LoopASD completion algorithm, as well as CUR-based sampling where the CUR approximation also serves as the completion method. Additionally, we propose ideas to make the CUR-based approach adaptive. As a result, capturing as little as 4–6% of the measurements is sufficient to recover the same information as a conventional full scan.
16:00
Uniform Equidistribution of Quadratic Polynomials via Averages of $\mathrm{SL}_2(\mathbb{R})$ Automorphic Kernels
Abstract
In recent joint work with J. Merikoski, we developed a new way to employ $\mathrm{SL}_2(\mathbb{R})$ spectral methods to number-theoretical counting problems, entirely avoiding Kloosterman sums and the Kuznetsov formula. The main result is an asymptotic formula for an automorphic kernel, with error terms controlled by two new kernels. This framework proves particularly effective when averaging over the level and leads to improvements in equidistribution results involving quadratic polynomials. In particular, we show that the largest prime divisor of $n^2 + h$ is infinitely often larger than $n^{1.312}$, recovering earlier results that had relied on the Selberg eigenvalue conjecture. Furthermore, we obtain, for the first time in this setting, strong uniformity in the parameter $h$.
Low-rank approximation of parameter-dependent matrices via CUR decomposition
Abstract
Low-rank approximation of parameter-dependent matrices A(t) is an important task in the computational sciences, with applications in areas such as dynamical systems and the compression of series of images. In this talk, we introduce AdaCUR, an efficient randomised algorithm for computing low-rank approximations of parameter-dependent matrices using the CUR decomposition. The key idea of our approach is the ability to reuse column and row indices for nearby parameter values, improving efficiency. The resulting algorithm is rank-adaptive, provides error control, and has complexity that compares favourably with existing methods. This is joint work with Yuji Nakatsukasa.
Control of multistable structures with shape optimization
Abstract
Shape optimization is a rich field at the intersection of analysis, optimization, and engineering. It seeks to determine the optimal geometry of structures to minimize performance objectives, subject to physical constraints—often modeled by Partial Differential Equations (PDEs). Traditional approaches commonly assume that these constraints admit a unique solution for each candidate shape, implying a single-valued shape-to-solution map. However, many real-world structures exhibit multistability, where multiple stable configurations exist under identical physical conditions.
This research departs from the single-solution paradigm by investigating shape optimization in the presence of multiple solutions to the same PDE constraints. Focusing on a neo-Hookean hyperelastic model, we formulate an optimization problem aimed at controlling the energy jump between distinct solutions. Drawing on bifurcation theory, we develop a theoretical framework that interprets these solutions as continuous branches parameterized by shape variations. Building on this foundation, we implement a numerical optimization strategy and present numerical results that demonstrate the effectiveness of our approach.
Fast solvers for high-order finite element discretizations of the de Rham complex
Abstract
Many applications in electromagnetism, magnetohydrodynamics, and pour media flow are well-posed in spaces from the 3D de Rham complex involving $H^1$, $H(curl)$, $H(div)$, and $L^2$. Discretizing these spaces with the usual conforming finite element spaces typically leads to discrete problems that are both structure-preserving and uniformly stable with respect to the mesh size and polynomial degree. Robust preconditioners/solvers usually require the inversion of subproblems or auxiliary problems on vertex, edge, or face patches of elements. For high-order discretizations, the cost of inverting these patch problems scales like $\mathcal{O}(p^9)$ and is thus prohibitively expensive. We propose a new set of basis functions for each of the spaces in the discrete de Rham complex that reduce the cost of the patch problems to $\mathcal{O}(p^6)$ complexity. By taking advantage of additional properties of the new basis, we propose further computationally cheaper variants of existing preconditioners. Various numerical examples demonstrate the performance of the solvers.
Computing complex resonances with AAA
Abstract
A beautiful example of a nonlinear eigenvalue problem is the determination of complex eigenvalues for wave scattering. This talk will show how nicely this can be done by applying AAA rational approximation to a scalarized resolvent sampled at a few real frequencies. Even for a domain as elementary as a circle with a gap in it, such computations do not seem to have been done before. This is joint work with Oscar Bruno and Manuel Santana at Caltech.
High-order finite element methods for multicomponent convection-diffusion
Abstract
Multicomponent fluids are mixtures of distinct chemical species (i.e. components) that interact through complex physical processes such as cross-diffusion and chemical reactions. Additional physical phenomena often must be accounted for when modelling these fluids; examples include momentum transport, thermality and (for charged species) electrical effects. Despite the ubiquity of chemical mixtures in nature and engineering, multicomponent fluids have received almost no attention from the finite element community, with many important applications remaining out of reach from numerical methods currently available in the literature. This is in spite of the fact that, in engineering applications, these fluids often reside in complicated spatial regions -- a situation where finite elements are extremely useful! In this talk, we present a novel class of high-order finite element methods for simulating cross-diffusion and momentum transport (i.e. convection) in multicomponent fluids. Our model can also incorporate local electroneutrality when the species carry electrical charge, making the numerical methods particularly desirable for simulating liquid electrolytes in electrochemical applications. We discuss challenges that arise when discretising the partial differential equations of multicomponent flow, as well as some salient theoretical properties of our numerical schemes. Finally, we present numerical simulations involving (i) the microfluidic non-ideal mixing of hydrocarbons and (ii) the transient evolution of a lithium-ion battery electrolyte in a Hull cell electrode.