Fri, 13 May 2022

15:00 - 16:00
L2

Non-Euclidean Data Analysis (and a lot of questions)

John Aston
(University of Cambridge)
Abstract

The statistical analysis of data which lies in a non-Euclidean space has become increasingly common over the last decade, starting from the point of view of shape analysis, but also being driven by a number of novel application areas. However, while there are a number of interesting avenues this analysis has taken, particularly around positive definite matrix data and data which lies in function spaces, it has increasingly raised more questions than answers. In this talk, I'll introduce some non-Euclidean data from applications in brain imaging and in linguistics, but spend considerable time asking questions, where I hope the interaction of statistics and topological data analysis (understood broadly) could potentially start to bring understanding into the applications themselves.

Fri, 06 May 2022

15:00 - 16:00
L4

Applied Topology TBC

Bernadette Stolz
(University of Oxford, Mathematical Institute)
Well-posedness and numerical schemes for one-dimensional McKean-Vlasov equations and interacting particle systems with discontinuous drift
Reisinger, C Stockinger, W BIT Numerical Mathematics volume 62 1505-1549 (18 May 2022)
Tue, 03 May 2022

12:30 - 13:30
C5

A model of internal stresses within hydrogel-coated stem cells in transit to the liver

Simon Finney
(Mathematical Institute (University of Oxford))
Abstract

In 2020, cirrhosis and other liver diseases were among the top five causes of death for
individuals aged 35-65 in Scotland, England and Wales. At present, the only curative
treatment for end-stage liver disease is through transplant which is unsustainable.
Stem cell therapies could provide an alternative. By encapsulating the stem cells we
can modulate the shear stress imposed on each cell to promote integrin expression
and improve the probability of engraftment. We model an individual, hydrogel-coated
stem cell moving along a fluid-filled channel due to a Stokes flow. The stem cell is
treated as a Newtonian fluid and the coating is treated as a poroelastic material with
finite thickness. In the limit of a stiff coating, a semi-analytical approach is developed
which exploits a decoupling of the fluids and solid problems. This enables the tractions
and pore pressures within the coating to be obtained, which then feed directly into a
purely solid mechanics problem for the coating deformation. We conduct a parametric
study to elucidate how the properties of the coating can be tuned to alter the stress
experienced by the cell.

Tue, 14 Jun 2022

15:30 - 16:30
L6

Extreme eigenvalues of the Jacobi Ensembles

Brian Winn
(Loughborough University)
Abstract

The Jacobi Ensembles of random matrices have joint distribution of eigenvalues proportional to the integration measure in the Selberg integral. They can also be realised as the singular values of principal submatrices of random unitaries. In this talk we will review some old and new results concerning the distribution of the largest and smallest eigenvalues.

Tue, 31 May 2022

15:30 - 16:30
L6

Magic squares and the symmetric group

Ofir Gorodetsky
(University of Oxford)
Abstract

In 2004, Diaconis and Gamburd computed statistics of secular coefficients in the circular unitary ensemble. They expressed the moments of the secular coefficients in terms of counts of magic squares. Their proof relied on the RSK correspondence. We'll present a combinatorial proof of their result, involving the characteristic map. The combinatorial proof is quite flexible and can handle other statistics as well. We'll connect the result and its proof to old and new questions in number theory, by formulating integer and function field analogues of the result, inspired by the Random Matrix Theory model for L-functions.

Partly based on the arXiv preprint https://arxiv.org/abs/2102.11966

Mon, 25 Apr 2022

15:30 - 16:30
L3

Scaling limits for Hastings-Levitov aggregation with sub-critical parameters

JAMES NORRIS
(University of Cambridge)
Abstract


We consider, in a framework of iterated random conformal maps, a two-parameteraggregation model of Hastings-Levitov type, in which the size and intensity of new particles are each chosen to vary as a power of the density of harmonic measure. Then we consider a limit
in which the overall intensity of particles become large, while the particles themselves become
small. For a certain `sub-critical' range of parameter values, we can show a law of large numbers and fluctuation central limit theorem. The admissible range of parameters includes an off-lattice version of the Eden model, for which we can show that disk-shaped clusters are stable.
Many open problem remain, not least because the limit PDE does not yet have a satisfactory mathematical theory.

This is joint work with Vittoria Silvestri and Amanda Turner.

Tue, 24 May 2022

15:30 - 16:30
L5

Correlations of the Riemann Zeta on the critical line

Valeriya Kovaleva
(University of Oxford)
Further Information

Note the unusual venue.

Abstract

In this talk we will discuss the correlations of the Riemann Zeta in various ranges, and prove a new result for correlations of squares. This problem is closely related to correlations of the characteristic polynomial of CUE with a very subtle difference. We will explain where this difference comes from, and what it means for the moments of moments of the Riemann Zeta, and its maximum in short intervals.

Tue, 17 May 2022

15:30 - 16:30
L6

Random landscape built by superposition of random plane waves

Bertrand Lacroix-A-Chez-Toine
(King's College London)
Abstract

Characterising the statistical properties of high dimensional random functions has been one of the central focus of the theory of disordered systems, and notably spin glasses, over the last decades. Applications to machine learning via deep neural network has seen a resurgence of interest towards this problem in recent years. The simplest yet non-trivial quantity to characterise these landscapes is the annealed total complexity, i.e. the rate of exponential growth of the average number of stationary points (or equilibria) with the dimension of the underlying space. A paradigmatic model for such random landscape in the $N$-dimensional Euclidean space consists of an isotropic harmonic confinement and a Gaussian random function, with rotationally and translationally invariant covariance [1]. The total annealed complexity in this model has been shown to display a ”topology trivialisation transition”: for weak confinement, the number of stationary points is exponentially large (positive complexity) while for strong confinement there is typically a single stationary point (zero complexity).

In this talk, I will present recent results obtained for a distinct exactly solvable model of random lanscape in the $N$-dimensional Euclidean space where the random Gaussian function is replaced by a superposition of $M > N$ random plane waves [2]. In this model, we compute the total annealed complexity in the limit $N\rightarrow\infty$ with $\alpha = M/N$ fixed and find, in contrast to the scenario exposed above, that the complexity remains strictly positive for any finite value of the confinement strength. Hence, there is no ”topology trivialisation transition” for this model, which seems to be a representative of a distinct class of universality.

 

References:

[1] Y. V. Fyodorov, Complexity of Random Energy Landscapes, Glass Transition, and Absolute Value of the Spectral Determinant of Random Matrices, Phys. Rev. Lett. 92, 240601 (2004) Erratum: Phys. Rev. Lett. 93, 149901(E) (2004).

[2] B. Lacroix-A-Chez-Toine, S. Belga-Fedeli, Y. V. Fyodorov, Superposition of Random Plane Waves in High Spatial Dimensions: Random Matrix Approach to Landscape Complexity, arXiv preprint arXiv:2202.03815, submitted to J. Math. Phys.

Subscribe to