Tue, 24 May 2022

14:00 - 15:00
L5

Dirac index and associated cycles for Harish-Chandra modules

Salah Mehdi
(Université de Lorraine)
Abstract

Since their introduction in 1928 by Paul A. Dirac, Dirac operators have been playing essential roles in many areas of Physics and Mathematics. In particular, they provide powerful and efficient tools to clarify (and sometimes solve) important problems in representation theory of real Lie groups, p-adic groups or Hecke algebras, such as classification, unitarity and geometric realization. In this representation theoretic context, the Dirac index of a Harish-Chandra module is a virtual module induced by Vogan’s Dirac cohomology. Once we observe that Dirac index commutes with translation functors, we will associate a polynomial (on a Cartan subalgebra) with a coherent family of Harish-Chandra modules. Then we shall explain how this polynomial can be used to connect nilpotent orbits, associated cycles and the leading term of the Taylor expansion of the characters of Harish-Chandra modules. This is joint wok with P. Pandzic, D. Vogan and R. Zierau.
 

Tue, 07 Jun 2022

14:00 - 16:00
N3.12

Shock Reflection and free boundary problems

Professor Mikhail Feldman
(University of Wisconsin-Madison)
Further Information

Sessions will be as follows:

Tuesday 7th, 2:00pm-4:00pm

Wednesday 8th, 2:00pm-3:30pm

Abstract

We will discuss shock reflection phenomena, mathematical formulation of shock reflection problem, structures of  shock reflection configurations, and von Neumann conjectures on transition between regular and Mach reflections. Then we will describe the results on existence and properties of regular reflection solutions for potential flow equation. The approach is to reduce the shock reflection problem to a free boundary problem for a nonlinear  elliptic equation in self-similar coordinates, where the reflected shock is the free boundary, and ellipticity degenerates near a part of a fixed boundary. We will discuss the techniques and methods used in the study of such free boundary problems.

 

Wed, 08 Jun 2022

14:00 - 16:00
L3

Shock Reflection and free boundary problems

Professor Mikhail Feldman
(University of Wisconsin-Madison)
Further Information

Sessions will be as follows:

Tuesday 7th, 2:00pm-4:00pm

Wednesday 8th, 2:00pm-3:30pm

Abstract

We will discuss shock reflection phenomena, mathematical formulation of shock reflection problem, structures of  shock reflection configurations, and von Neumann conjectures on transition between regular and Mach reflections. Then we will describe the results on existence and properties of regular reflection solutions for potential flow equation. The approach is to reduce the shock reflection problem to a free boundary problem for a nonlinear  elliptic equation in self-similar coordinates, where the reflected shock is the free boundary, and ellipticity degenerates near a part of a fixed boundary. We will discuss the techniques and methods used in the study of such free boundary problems.

 

Mon, 27 Jun 2022

12:45 - 13:45
L3

Marginal quenches and drives in Tomonaga-Luttinger liquids/free boson CFTs

Apoorv Tivari
(Stockholm)
Abstract

I will discuss the free compact boson CFT thrown out of equilibrium by marginal deformations, modeled by quenching or periodically driving the compactification radius of the free boson between two different values. All the dynamics will be shown to be crucially dependent on the ratio of the compactification radii via the Zamolodchikov distance in the space of marginal deformations. I will present various exact analytic results for the Loschmidt echo and the time evolution of energy density for both the quench and the periodic drive. Finally, I will present a non-perturbative computation of the  Rényi divergence, an information-theoretic distance measure, between two marginally deformed thermal density matrices.

 

The talk will be based on the recent preprint: arXiv:2206.11287

Thu, 26 May 2022

17:00 - 18:00
Online

The Cauchy problem for the ternary interaction of impulsive gravitational waves

Maxime Van de Moortel
(Princeton University)
Further Information

A link for this talk will be sent to our mailing list a day or two in advance.  If you are not on the list and wish to be sent a link, please contact Benjamin Fehrman.

Abstract

In General Relativity, an impulsive gravitational wave is a localized and singular solution of the 

Einstein equations modeling the spacetime distortions created by a strongly gravitating source.
I will present a comprehensive theory allowing for ternary interactions of such impulsive gravitational waves in translation-symmetry, offering the first examples of such an interaction.  

The proof combines new techniques from harmonic analysis, Lorentzian geometry, and hyperbolic PDEs that are helpful to treat highly anisotropic low-regularity questions beyond the considered problem.  

This is joint work with Jonathan Luk.

Tue, 14 Jun 2022

14:30 - 15:00

TBA

TBA
Tue, 14 Jun 2022

14:00 - 14:30
L5

The strain Hodge Laplacian and DGFEM for the incompatibility operator

Francis Aznaran
((Oxford University))
Abstract

Motivated by the physical relevance of many Hodge Laplace-type PDEs from the finite element exterior calculus, we analyse the Hodge Laplacian boundary value problem arising from the strain space in the linear elasticity complex, an exact sequence of function spaces naturally arising in several areas of continuum mechanics. We propose a discretisation based on the adaptation of discontinuous Galerkin FEM for the incompatibility operator $\mathrm{inc} := \mathrm{rot}\circ\mathrm{rot}$, using the symmetric-tensor-valued Regge finite element to discretise  the strain field; via the 'Regge calculus', this element has already been successfully applied to discretise another metric tensor, namely that arising in general relativity. Of central interest is the characterisation of the associated Sobolev space $H(\mathrm{inc};\mathbb{R}^{d\times d}_{\mathrm{sym}})$. Building on the pioneering work of van Goethem and coauthors, we also discuss promising connections between functional analysis of the $\mathrm{inc}$ operator and Kröner's theory of intrinsic elasticity in the presence of defects.

This is based on ongoing work with Dr Kaibo Hu.

Tue, 31 May 2022

14:30 - 15:00
L1

Randomized algorithms for Tikhonov regularization in linear least squares

Maike Meier
((Oxford University))
Abstract

Regularization of linear least squares problems is necessary in a variety of contexts. However, the optimal regularization parameter is usually unknown a priori and is often to be determined in an ad hoc manner, which may involve solving the problem for multiple regularization parameters. In this talk, we will discuss three randomized algorithms, building on the sketch-and-precondition framework in randomized numerical linear algebra (RNLA), to efficiently solve this set of problems. In particular, we consider preconditioners for a set of Tikhonov regularization problems to be solved iteratively. The first algorithm is a Cholesky-based algorithm employing a single sketch for multiple parameters; the second algorithm is SVD-based and improves the computational complexity by requiring a single decomposition of the sketch for multiple parameters. Finally, we introduce an algorithm capable of exploiting low-rank structure (specifically, low statistical dimension), requiring a single sketch and a single decomposition to compute multiple preconditioners with low-rank structure. This algorithm avoids the Gram matrix, resulting in improved stability as compared to related work.

Subscribe to