Dr Madeleine Moore
Address
Mathematical Institute
University of Oxford
Andrew Wiles Building
Radcliffe Observatory Quarter
Woodstock Road
Oxford
OX2 6GG
- Mathematical modelling.
- Fluid dynamics, perturbation methods, matched asymptotics, integral equations.
- Complex analysis, particularly singular integral equations and Riemann-Hilbert problems.
- Splash dynamics and water entry.
- Aircraft icing.
Moore, M. R. (2021) Incorporating pre-impact air-cushioning effects into the Wagner model of impact theory. J. Eng. Math. (In press)
Moore, M. R., Vella, D. & Oliver, J. M. (2021) The nascent coffee ring: how solute diffusion counters advection. J. Fluid Mech. 920:A54
Negus, M. J., Moore, M. R., Oliver, J. M. & Cimpeanu, R. (2021) Droplet impact onto a spring-supported plate: analysis and simulations. J. Eng. Math. 128:3
Andresen, H. A., Fleury, R. M. N., Moore, M. R. & Hills, D. A. (2021) Explicit and asymptotic solutions for frictional incomplete half-plane contacts subject to general oscillatory loading in the steady-state. J. Mech. Phys. Solids 146:104214
Andresen, H. A., Hills D. A. & Moore, M. R. (2021) Representation of incomplete contact problems by half planes. Eur. J. Mech. / A Solids. 85:104138
Moore, M. R. & Hills, D. A. (2020) Extending the Mossakovskii method to contacts supporting a moment. J. Mech. Phys. Solids 141:103989
Moore, M. R., Cimpeanu, R., Ockendon, H., Ockendon, J. R. & Oliver, J. M. (2020) Boundary layers in Helmholtz flows. J. Fluid Mech. 882:A19
Andresen, H., Hills, D. A. & Moore, M. R. (2020) The steady state partial slip problem for half plane contacts subject to a constant normal load using glide dislocations. Eur. J. Mech. / A Solids. 79:103868