# Dr Madeleine Moore

University of Oxford

Andrew Wiles Building

Radcliffe Observatory Quarter

Woodstock Road

Oxford

OX2 6GG

Moore, M. R. (2021) Incorporating pre-impact air-cushioning effects into the Wagner model of impact theory. J. Eng. Math. (In press)

Moore, M. R., Vella, D. & Oliver, J. M. (2021) The nascent coffee ring: how solute diffusion counters advection. J. Fluid Mech. 920:A54

Negus, M. J., Moore, M. R., Oliver, J. M. & Cimpeanu, R. (2021) Droplet impact onto a spring-supported plate: analysis and simulations. J. Eng. Math. **128**:3

Andresen, H. A., Fleury, R. M. N., Moore, M. R. & Hills, D. A. (2021) Explicit and asymptotic solutions for frictional incomplete half-plane contacts subject to general oscillatory loading in the steady-state. J. Mech. Phys. Solids **146**:104214

Andresen, H. A., Hills D. A. & Moore, M. R. (2021) Representation of incomplete contact problems by half planes. Eur. J. Mech. / A Solids. **85**:104138

Moore, M. R. & Hills, D. A. (2020) Extending the Mossakovskii method to contacts supporting a moment. J. Mech. Phys. Solids **141**:103989

Moore, M. R., Cimpeanu, R., Ockendon, H., Ockendon, J. R. & Oliver, J. M. (2020) Boundary layers in Helmholtz flows. J. Fluid Mech. **882**:A19

Andresen, H., Hills, D. A. & Moore, M. R. (2020) The steady state partial slip problem for half plane contacts subject to a constant normal load using glide dislocations. Eur. J. Mech. / A Solids. **79**:103868

*Cimpeanu, R*

*Moore, M*

*Journal of Fluid Mechanics*

*volume 856*

*764-796*

*(11 Oct 2018)*

*Moore, M*

*Ramesh, R*

*Hills, D*

*Barber*

*Journal of the Mechanics and Physics of Solids*

*volume 118*

*245-253*

*(24 May 2018)*

*Moore, M*

*Whiteley, J*

*Oliver, J*

*Journal of Fluid Mechanics*

*volume 846*

*711-751*

*(09 May 2018)*

*Oliver, J*

*Ockendon, J*

*Moore, M*

*IMA Journal of Applied Mathematics*

*Oliver, J*

*Moore, M*

*Howison, S*

*Ockendon, J*

*Journal of Fluid Mechanics*

*(2012)*

- Mathematical modelling.

- Fluid dynamics, perturbation methods, matched asymptotics, integral equations.

- Complex analysis, particularly singular integral equations and Riemann-Hilbert problems.

- Splash dynamics and water entry.

- Aircraft icing.