Further Sheets on Applied Mathematics

Dynamics 1

  1. A particle, of mass $m$, has position vector $$    \mathbf{r}(t)=(x(t),y(t))=(3\sin 2t+4\cos 2t,3t+2)    $$ at time $t$.
    1. Determine the particle's momentum $\displaystyle m \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$ at time $t$.
    2. Determine the particle's kinetic energy $\displaystyle \frac{1}{2}m \left| \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} \right|^2$ at time $t$.
    3. At what times is the particle's kinetic energy maximal?
    4. Determine the particle's acceleration $\displaystyle \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2}$ at time $t$. Show that $$        \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2}=-4x(t)\mathbf{i}.        $$
  2. Consider a particle of mass $m$ moving in one vertical dimension with height $y(t)$. It moves under gravity, so that its acceleration always satisfies $\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}t^2}=-g$. Initially the particle is projected from ground-level with speed $v$. That is, at $t=0$, we have $y=0$ and $\displaystyle \frac{\mathrm{d}y}{\mathrm{d}t}=v$.
    1. Determine $y(t)$.
    2. What is the greatest height achieved by the particle?
    3. Find the time taken to return to ground-level.
    4. Show that the quantity $$ E=\frac{1}{2}m\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2+mgy$$ is constant throughout the motion.
  3. A particle of mass $m$ moves along the $x$-axis under the force $F(t)$, at time $t$, given below. $$    F(t)=\begin{cases}        3& 0\leq t <2,\\        1& 2\leq t<3,\\        2& 3\leq t \leq 5,    \end{cases}    $$and otherwise moves under no force. Initially, at $t=0$, the particle is at rest at $x=0$.
    Newton's Second Law states that $$    F(t)=m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}.    $$ Determine $x$ and $\displaystyle \frac{\mathrm{d}x}{\mathrm{d}t}$. On separate axes, sketch graphs of $x$ and $\displaystyle \frac{\mathrm{d}x}{\mathrm{d}t}$ against $t$.    
  4. A particle of mass $m$ moves along the $x$-axis under a force $F(x)$, when at position $x$, given below $$    F(x)=\begin{cases}        -kx^3& -a<x<a\\        0& |x|\geq a.    \end{cases}    $$ Initially, at $t=0$, we have $x=0$ and $\displaystyle \frac{\mathrm{d}x}{\mathrm{d}t}=u\geq 0$    
    1. Let $\displaystyle v=\frac{\mathrm{d}x}{\mathrm{d}t}$. Show that        $$        \frac{\mathrm{d}^2x}{\mathrm{d}t^2}=v\frac{\mathrm{d}v}{\mathrm{d}x}.        $$
    2. From Newton's Second Law, show that $$   \frac{1}{2}mv^2+\frac{1}{4}    kx^4=E        $$ is constant throughout the motion.
    3. Find the minimum value $U$ of $u$ such that the particle moves outside of the interval $-a<x<a$. If $u<U$ what is the maximum value of $x$?
    4. Show that if $u=U$ then the time $T$ taken for the particle to reach $x=a$ equals $$        T=\sqrt{\frac{2m}{k}}\int_0^a \frac{\mathrm{d}x}{\sqrt{a^4-x^4}}.        $$

 

Dynamics 2

  1. Say a projectile of mass $m$ is shot at time $t=0$ from the origin with speed $V$ at an angle $\alpha$ to the horizontal. Throughout the motion the particle is acted on by gravity so that $\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}t^2}=-g$.
    1. Write down the initial conditions $x(0)$, $y(0)$, $x'(0)$, $y'(0)$.
    2. Determine the particle's position vector $(x(t),y(t))$ at time $t$.
    3. Determine where the projectile lands (returns to ground level $y=0$).
    4. What value of $\alpha$ maximises the distance travelled?
    5. Show that $$\frac{1}{2}m\left(\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2+\left(\frac{\mathrm{d}y}{\mathrm{d}t}\right)^2\right)+mgy=\frac{1}{2}mV^2$$ throughout the motion.
  2. If a spring, with spring constant $\alpha$, is stretch by an extension $x$, Hooke's Law states that the force on the particle has magnitude $\alpha |x|$ towards the equilibrium. Thus whether the extension $x$ is positive (an extension) or negative (a compression) Newton's Second Law gives $$    m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}=-\alpha x    $$ Show that the general solution of this equation is $$    x(t)=A\cos\omega t +B \sin \omega t, $$    for constants $A$ and $B$, and where $\omega^2=\alpha/m$. Show that $$    \frac{1}{2}m\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2+\frac{1}{2}\alpha x^2 = E  $$ is constant throughout the motion. What does the quantity $\frac{1}{2}\alpha x^2$ represent?
  3. Say that the particle and spring in Question 2 lie on a rough table, so that there is a resistant frictional force of magnitude $\mu mg$ (coefficient of friction $\mu$) when the particle is in motion, and we have $$ m\frac{\mathrm{d}^2x}{\mathrm{d}t^2}=-\alpha x +\mu mg\quad\text{when $x\geq0$.}    $$ Say that we have initially $x(0)=\varepsilon>0$ and $x'(0)=0$. What happens if $\mu \geq \alpha \varepsilon/(mg)$? Show that if  $$    \frac{\varepsilon \alpha}{2mg}<\mu < \frac{\varepsilon \alpha}{mg} $$then the particle comes to rest before its normal equilibrium position, and find the value of $x$ where this occurs.
    Show that $$  \frac{1}{2}m\left(\frac{\mathrm{d}x}{\mathrm{d}t}\right)^2+\frac{1}{2}\alpha x^2=\frac{1}{2}\alpha \varepsilon^2 +\mu m g (x-\varepsilon)    $$ throughout the motion and explain the significance of the terms in this identity.
  4. Consider a mass $m$ at the end of a light inextensible rod of length $l$ making small swings under gravity; let $\theta$ denote the angle the rod makes with the vertical.
    1. Note that $\mathbf{r}=(l \sin \theta, -l \cos \theta)$. What do $\displaystyle \frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t}$ and $\displaystyle \frac{\mathrm{d}^2\mathbf{r}}{\mathrm{d}t^2}$ equal?
    2. Use Newton's Second Law to show that $$        l\frac{\mathrm{d}^2\theta}{\mathrm{d}t^2}=-g \sin \theta,        $$and find an expression for the tension in the rod.
    3. Show throughout the motion that $\displaystyle \frac{1}{2}ml^2\left(\frac{\mathrm{d}\theta}{\mathrm{d}t}\right)^2-mgl\cos \theta=E$ is constant.
    4. Say that the pendulum's oscillations are small enough that the approximation $\sin\theta\approx\theta$ applies. Show that the pendulum's swings have period $2\pi\sqrt{l/g}$,
    5. More generally if the particle starts off with $\theta=\alpha$, $\displaystyle \frac{\mathrm{d}\theta}{\mathrm{d}t}=0$, show that the oscillations have exact period $$        4\sqrt{\frac{l}{2g}}\int_0^\alpha \frac{\mathrm{d}\theta}{\sqrt{\cos\theta-\cos\alpha}}.        $$
Please contact us with feedback and comments about this page. Last updated on 06 Jun 2023 16:40.