Thu, 07 Nov 2019

14:00 - 15:00
L4

A posteriori error analysis for domain decomposition

Simon Tavener
(Colorado State University)
Abstract

Domain decomposition methods are widely employed for the numerical solution of partial differential equations on parallel computers. We develop an adjoint-based a posteriori error analysis for overlapping multiplicative Schwarz domain decomposition and for overlapping additive Schwarz. In both cases the numerical error in a user-specified functional of the solution (quantity of interest), is decomposed into a component that arises due to the spatial discretization and a component that results from of the finite iteration between the subdomains. The spatial discretization error can be further decomposed in to the errors arising on each subdomain. This decomposition of the total error can then be used as part of a two-stage approach to construct a solution strategy that efficiently reduces the error in the quantity of interest.

Wed, 09 Nov 2011

10:15 - 11:15
OCCAM Common Room (RI2.28)

A posteriori error analysis for a cut-cell finite-volume method

Simon Tavener
(Colorado State University)
Abstract

Diffusive process with discontinuous coefficients provide significant computational challenges. We consider the solution of a diffusive process in a domain where the diffusion coefficient changes discontinuously across a curved interface. Rather than seeking to construct discretizations that match the interface, we consider the use of regularly-shaped meshes so that the interface "cuts'' through the cells (elements or volumes). Consequently, the discontinuity in the diffusion coefficients has a strong impact on the accuracy and convergence of the numerical method. We develop an adjoint based a posteriori error analysis technique to estimate the error in a given quantity of interest (functional of the solution). In order to employ this method, we first construct a systematic approach to discretizing a cut-cell problem that handles complex geometry in the interface in a natural fashion yet reduces to the well-known Ghost Fluid Method in simple cases. We test the accuracy of the estimates in a series of examples.

Thu, 30 Oct 2008

14:00 - 15:00
Comlab

A posteriori error estimation and adaptivity for an operator decomposition approach to conjugate heat transfer

Prof Simon Tavener
(Colorado State University)
Abstract
Operator decomposition methods are an attractive solution strategy for computing complex phenomena involving multiple physical processes, multiple scales or multiple domains. The general strategy is to decompose the problem into components involving simpler physics over a relatively limited range of scales, and then to seek the solution of the entire system through an iterative procedure involving solutions of the individual components. We analyze the accuracy of an operator decomposition finite element method for a conjugate heat transfer problem consisting of a fluid and a solid coupled through a common boundary. We derive accurate a posteriori error estimates that account for both local discretization errors and the transfer of error between fluid and solid domains. We use these estimates to guide adaptive mesh refinement. In addition, we show that the order of convergence of the operator decomposition method is limited by the accuracy of the transferred gradient information, and how a simple boundary flux recovery method can be used to regain the optimal order of accuracy in an efficient manner. This is joint work with Don Estep and Tim Wildey, Department of Mathematics, Colorado State University.
Subscribe to Colorado State University