Thu, 08 Feb 2024
16:00
Lecture Room 4, Mathematical Institute

Inhomogeneous Kaufman measures and diophantine approximation

Sam Chow
(Dept. Mathematics, University of Warwick)
Abstract

Kaufman constructed a family of Fourier-decaying measures on the set of badly approximable numbers. Pollington and Velani used these to show that Littlewood’s conjecture holds for a full-dimensional set of pairs of badly approximable numbers. We construct analogous measures that have implications for inhomogeneous diophantine approximation. In joint work with Agamemnon Zafeiropoulos and Evgeniy Zorin, our idea is to shift the continued fraction and Ostrowski expansions simultaneously.

Mon, 04 Mar 2024
15:30
Lecture room 5

The Allen-Cahn equation with weakly critical initial datum

Dr Tommaso Rosati
(Dept. Mathematics, University of Warwick)
Abstract

Inspired by questions concerning the evolution of phase fields, we study the Allen-Cahn equation in dimension 2 with white noise initial datum. In a weak coupling regime, where the nonlinearity is damped in relation to the smoothing of the initial condition, we prove Gaussian fluctuations. The effective variance that appears can be described as the solution to an ODE. Our proof builds on a Wild expansion of the solution, which is controlled through precise combinatorial estimates. Joint works with Simon Gabriel, Martin Hairer, Khoa Lê and Nikos Zygouras.

Mon, 15 Jan 2024
15:30
Lecture room 5

The Critical 2d Stochastic Heat Flow and other critical SPDEs

Professor Nikolaos Zygouras
(Dept. Mathematics, University of Warwick)
Abstract
Thanks to the theories of Paracontrolled Distributions and Regularity structures we now have a complete theory of  singular SPDEs, which are “sub-critical” in the sense of renormalisation. Recently, there have been efforts to approach the situation of “critical” SPDEs and statistical mechanics models. A first such treatment has been through the study of the two-dimensional stochastic heat equation, which has revealed a certain phase transition and has led to the construction of the novel object called the Critical 2d Stochastic Heat Flow. In this talk we will present some aspects of this model and its construction. We will also present developments relating to other critical SPDEs.
Parts of this talk are based on joint works with Caravenna and Sun and others with Rosati and Gabriel.  
Thu, 06 Jun 2019

12:00 - 13:00
L4

The geometry of measures solving a linear PDE

Adolfo Arroyo-Rabasa
(Dept. Mathematics, University of Warwick)
Abstract

Function solutions to linear PDEs often carry rigidity properties directly associated to the equation they satsify. However, the realm of solutions covers a much larger sets of solutions. For instance, we can speak of measure solutions, as opposed to classical $C^\infty$ functions or even $L^p$ functions. It is only logical to expect that the “better” space the solution lives in, the more rigid its properties will be.

Measure solutions lie just at a comfortable half of this threshold: it is a sufficently large space which allows for a rich range of new structures; but is sufficiently rigid to preserve a meaningful geometrical pattern. For example, have you ever wondered how gradients look like in the space of measures? What about other PDE structures? In this talk I will discuss these general questions, a few examples of them, and a new theoretical approach to its understanding via PDE theory, harmonic analysis, and geometric measure theory methods.

Mon, 30 Jan 2017

16:00 - 17:00
C3

Cohomology of Varieties

Alex Torzewski
(Dept. Mathematics, University of Warwick)
Abstract

We outline what we expect from a good cohomology theory and introduce some of the most common cohomology theories. We go on to discuss what properties each should encode and detail attempts to fit them into a common framework. We build evidence for this viewpoint through several worked number theoretic examples and explain how many of the key conjectures in number theory fit into this theory of motives.

Thu, 14 Oct 2010

16:00 - 17:00
L3

Generators for Rational Points on Cubic Surfaces

Dr S Siksek
(Dept. Mathematics, University of Warwick)
Abstract

Let C be a smooth plane cubic curve over the rationals. The Mordell--Weil Theorem can be restated as follows: there is a finite subset B of rational points such that all rational points can be obtained from this subset by successive tangent and secant constructions. It is conjectured that a minimal such B can be arbitrarily large; this is indeed the well-known conjecture that there are elliptic curves with arbitrarily large ranks. This talk is concerned with the corresponding problem for cubic surfaces.


Subscribe to Dept. Mathematics, University of Warwick