Tue, 25 May 2021
14:00
Virtual

Crossing probabilities for planar percolation

Vincent Tassion
(ETH)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Percolation models were originally introduced to describe the propagation of a fluid in a random medium. In dimension two, the percolation properties of a model are encoded by so-called crossing probabilities (probabilities that certain rectangles are crossed from left to right). In the eighties, Russo, Seymour and Welsh obtained general bounds on crossing probabilities for Bernoulli percolation (the most studied percolation model, where edges of a lattice are independently erased with some given probability $1-p$). These inequalities rapidly became central tools to analyze the critical behavior of the model.
In this talk I will present a new result which extends the Russo-Seymour-Welsh theory to general percolation measures satisfying two properties: symmetry and positive correlation. This is a joint work with Laurin Köhler-Schindler.

Tue, 06 Oct 2020
15:30
Virtual

Liouville quantum gravity with matter central in (1,25): a probabilistic approach

Nina Holden
(ETH)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

Liouville quantum gravity (LQG) is a theory of random fractal surfaces with origin in the physics literature in the 1980s. Most literature is about LQG with matter central charge $c\in (-\infty,1]$. We study a discretization of LQG which makes sense for all $c\in (-\infty,25)$. Based on a joint work with Gwynne, Pfeffer, and Remy.

Fri, 29 May 2009
14:15
Oxford-Man Institute

BSDEs from utility indifference valuation: Some new results and techniques

Martin Schweizer
(ETH)
Abstract

One of the popular approaches to valuing options in incomplete financial markets is exponential utility indifference valuation. The value process for the corresponding stochastic control problem can often be described by a backward stochastic differential equation (BSDE). This is very useful for proving theoretical properties, but actually solving these equations is difficult. With the goal of obtaining more information, we therefore study BSDE transformations that allow us to derive upper and/or lower bounds, in terms of solutions of other BSDEs, that can be computed more explicitly. These ideas and techniques also are of independent interest for BSDE theory.

This is joint work with Christoph Frei and Semyon Malamud.

Subscribe to ETH