Thu, 03 Sep 2020

16:00 - 17:00

Topological representation learning

Michael Moor
(ETH Zurich)
Abstract

Topological features as computed via persistent homology offer a non-parametric approach to robustly capture multi-scale connectivity information of complex datasets. This has started to gain attention in various machine learning applications. Conventionally, in topological data analysis, this method has been employed as an immutable feature descriptor in order to characterize topological properties of datasets. In this talk, however, I will explore how topological features can be directly integrated into deep learning architectures. This allows us to impose differentiable topological constraints for preserving the global structure of the data space when learning low-dimensional representations.

Tue, 05 May 2020
15:30
Virtual

Multidimensional Erdős-Szekeres theorem

Benny Sudakov
(ETH Zurich)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

The classical Erdős-Szekeres theorem dating back almost a hundred years states that any sequence of $(n-1)^2+1$ distinct real numbers contains a monotone subsequence of length $n$. This theorem has been generalised to higher dimensions in a variety of ways but perhaps the most natural one was proposed by Fishburn and Graham more than 25 years ago. They raise the problem of how large should a $d$-dimesional array be in order to guarantee a "monotone" subarray of size $n \times n \times \ldots \times n$. In this talk we discuss this problem and show how to improve their original Ackerman-type bounds to at most a triple exponential. (Joint work with M. Bucic and T. Tran)

Tue, 26 Nov 2019
16:00
N3.12

The local-to-global property for Morse quasi-geodesics

Davide Spriano
(ETH Zurich)
Abstract

An important property of Gromov hyperbolic spaces is the fact that every path for which all sufficiently long subpaths are quasi-geodesics is itself a quasi-geodesic. Gromov showed that this property is actually a characterization of hyperbolic spaces. In this talk, we will consider a weakened version of this local-to-global behaviour, called the Morse local-to-global property. The class of spaces that satisfy the Morse local-to-global property include several examples of interest, such as CAT(0) spaces, Mapping Class Groups, fundamental groups of closed 3-manifolds and more. The leverage offered by knowing that a space satisfies this property allows us to import several results and techniques from the theory of hyperbolic groups. In particular, we obtain results relating to stable subgroups, normal subgroups and algorithmic properties.

Fri, 14 Jun 2019

12:00 - 13:00
L4

A neural network approach to SLV Calibration

Wahid Khosrawi
(ETH Zurich)
Abstract

 A central task in modeling, which has to be performed each day in banks and financial institutions, is to calibrate models to market and historical data. So far the choice which models should be used was not only driven by their capacity of capturing empirically the observed market features well, but rather by computational tractability considerations. Due to recent work in the context of machine learning, this notion of tractability has changed significantly. In this work, we show how a neural network approach can be applied to the calibration of (multivariate) local stochastic volatility models. We will see how an efficient calibration is possible without the need of interpolation methods for the financial data. Joint work with Christa Cuchiero and Josef Teichmann.

Thu, 07 Feb 2019
12:00
L4

Nonlinear Stein theorem for differential forms

Swarnendu Sil
(ETH Zurich)
Abstract

Stein ($1981$) proved the borderline Sobolev embedding result which states that for $n \geq 2,$ $u \in L^{1}(\mathbb{R}^{n})$ and $\nabla u \in L^{(n,1)}(\mathbb{R}^{n}; \mathbb{R}^{n})$ implies $u$ is continuous. Coupled with standard Calderon-Zygmund estimates for Lorentz spaces, this implies $u \in C^{1}(\mathbb{R}^{n})$ if $\Delta u \in L^{(n,1)}(\mathbb{R}^{n}).$ The search for a nonlinear generalization of this result culminated in the work of Kuusi-Mingione ($2014$), which proves the same result for $p$-Laplacian type systems. \paragraph{} In this talk, we shall discuss how these results can be extended to differential forms. In particular, we can prove that if $u$ is an $\mathbb{R}^{N}$-valued $W^{1,p}_{loc}$ $k$-differential form with $\delta \left( a(x) \lvert du \rvert^{p-2} du \right) \in L^{(n,1)}_{loc}$ in a domain of $\mathbb{R}^{n}$ for $N \geq 1,$ $n \geq 2,$ $0 \leq k \leq n-1, $ $1 < p < \infty, $ with uniformly positive, bounded, Dini continuous scalar function $a$, then $du$ is continuous.

Thu, 02 May 2019

16:00 - 17:30
L3

Cavitation and fracture in soft solids

Dr. Robert Style
(ETH Zurich)
Abstract

Cracks in many soft solids behave very differently to the classical picture of fracture, where cracks are long and thin, with damage localised to a crack tip. In particular, small cracks in soft solids become highly rounded — almost circular — before they start to extend. However, despite being commonplace, this is still not well understood. We use a phase-separation technique in soft, stretched solids to controllably nucleate and grow small, nascent cracks. These give insight into the soft failure process. In particular, our results suggest fracture occurs in two regimes. When a crack is large, it obeys classical linear-elastic fracture mechanics, but when it is small it grows in a new, scale-free way at a constant driving stress.

Mon, 26 Nov 2018

15:45 - 16:45
L3

Stochastic Euler-Lagrangian condition in semi-martingale optimal transport

LIU CHONG
(ETH Zurich)
Abstract

In semimartingale optimal transport problem, the functional to be minimized can be considered as a “stochastic action”, which is the expectationof a “stochastic Lagrangian” in terms of differential semimartingale characteristics. Therefore it would be natural to apply variational calculus approach to characterize the minimizers. R. Lassalle and A.B. Cruzeiro have used this approach to establish a stochastic Euler-Lagrangian condition for semimartingale optimal transport by perturbing the drift terms. Motivated by their work, we want to perform the same type of calculus for martingale optimal transport problem. In particular, instead of only considering perturbations in the drift terms, we try to find a nice variational family for volatility,and then obtain the stochastic Euler-Lagrangian condition for martingale laws. In the first part of this talk we will mention some basic results regarding the existence of minimizers in semimartingale optimal transport problem. In the second part, we will introduce Lassalle and Cruzeiro’s  work, and give a simple example related to this topic, where the variational family is induced by time-changes; and then we will introduce some potential problems that are needed to be solved.

Thu, 10 May 2018

16:00 - 17:00
C5

Morse subsets of hierarchically hyperbolic spaces

Davide Spriano
(ETH Zurich)
Abstract

When dealing with geometric structures one natural question that arise is "when does a subset inherit the geometry of the ambient space"? In the case of hyperbolic space, the concept of quasi-convexity provides answer to this question. However, for a general metric space, being quasi-convex is not a quasi-isometric invariant. This motivates the notion of Morse subsets. In this talk we will motivate the definition and introduce some examples. Then we will introduce the class of hierarchically hyperbolic groups (HHG), and furnish a complete characterization of Morse subgroups of HHG. If time allows, we will discuss the relationship between Morse subgroups and hyperbolically-embedded subgroups. This is a joint work with Hung C. Tran and Jacob Russell.

Mon, 07 May 2018

14:15 - 15:15
L4

Tautological integrals over Hilbert scheme of points.

Greg Berczi
(ETH Zurich)
Abstract

I present recently developed iterated residue formulas for tautological integrals over Hilbert schemes of points on  smooth  manifolds. Applications include curve and hypersurface counting formulas. Joint work with Andras Szenes.

 

Mon, 30 Apr 2018

16:00 - 17:00
L4

Regularity vs. singularity for elliptic and parabolic systems

Connor Mooney
(ETH Zurich)
Abstract

Hilbert's 19th problem asks if minimizers of "natural" variational integrals are smooth. For the past century, this problem inspired fundamental regularity results for elliptic and parabolic PDES. It also led to the construction of several beautiful counterexamples to regularity. The dichotomy of regularity vs. singularity is related to that of single PDE (the scalar case) vs. system of PDEs (the vectorial case), and low dimension vs. high dimension. I will discuss some interesting recent counterexamples to regularity in low-dimensional vectorial cases, and outstanding open problems. Parts of this are joint works with A. Figalli and O. Savin.

Subscribe to ETH Zurich