Mon, 23 May 2011
15:45
Oxford-Man Institute

Fully coupled systems of functional differential equations and applications

Matteo Casserini (joint work with Gechun Liang)
(ETH Zurich)
Abstract

Recently, Liang, Lyons and Qian developed a new methodology for the study of backward stochastic differential equations (BSDEs) on general filtered probability spaces. Their approach is based on the analysis of a particular class of functional differential equations, where the driver of the equation does not depend only on the present, but also on the terminal value of the solution.

The purpose of this work is to study fully coupled systems of forward functional differential equations, which are related to a broad class of fully coupled forward-backward stochastic dynamics with respect to general filtrations. In particular, these systems of functional differential equations have a more homogeneous structure with respect to the underlying forward-backward problems, allowing to partly avoid the conflicting nature between the forward and backward components.

Another advantage of the approach is that its generality allows to consider many other types of forward-backward equations not treated in the classical literature: this is shown with the help of several examples, which have interesting applications to mathematical finance and are related to parabolic integro-partial differential equations. In the second part of the talk, we introduce a numerical scheme for the approximation of decoupled systems, based on a time discretization combined with a local iteration approach.

Mon, 23 May 2011
14:15
Oxford-Man Institute

'Nonlilnear L\'evy Processes and Interacting Particles'.

Vassili Kolokoltsov
(ETH Zurich)
Abstract

I will introduce the notion of a nonlinear Levy process, discuss basic well-posednes, SDE links and the connection with interacting particles. The talk is aimed to be an introduction to the topic of my recent CUP monograph 'Nonllinear Markov processes and kinetic equations'.

Fri, 04 Mar 2011
14:15
L3

Duality and Asymptotics in Portfolio Optimization with Transaction Costs

Johannes Muhle-Karbe
(ETH Zurich)
Abstract

We show how to solve optimization problems in the presence of proportional transaction costs by determining a shadow price, which is a solution to the dual problem. Put differently, this is a fictitious frictionless market evolving within the bid-ask spread, that leads to the same optimization problem as in the original market with transaction costs. In addition, we also discuss how to obtain asymptotic expansions of arbitrary order for small transaction costs. This is joint work with Stefan Gerhold, Paolo Guasoni, and Walter Schachermayer.

Fri, 21 Jan 2011
14:15
DH 1st floor SR

Affine Processes: theory, numerics and applications to Finance

Prof Josef Teichmann
(ETH Zurich)
Abstract

We present theory and numerics of affine processes and several of their applications in finance. The theory is appealing due to methods from probability theory, analysis and geometry. Applications are diverse since affine processes combine analytical tractability with a high flexibility to model stylized facts like heavy tails or stochastic volatility.

Thu, 13 May 2010
16:00
L3

Torsion Points on Fibered Powers of an Elliptic Surface

Philip Habegger - (JOINT WITH NUMBER THEORY SEMINAR)
(ETH Zurich)
Abstract

Jointly with Number Theory

Consider a family of abelian varieties whose base is an algebraic variety. The union of all torsion groups over all fibers of the family will be called the set of torsion points of the family. If the base variety is a point then the family is just an abelian variety.

In this case the Manin-Mumford Conjecture, a theorem of Raynaud, implies that a subvariety of the abelian variety contains a Zariski dense set of torsion points if and only if it is itself essentially an abelian subvariety. This talk is on possible extensions to certain families where the base is a curve. Conjectures of André and Pink suggest considering "special points": these are torsion points whose corresponding fibers satisfy an additional arithmetic property. One possible property is for the fiber to have complex multiplication; another is for the fiber to be isogenous to an abelian variety fixed in advance.

We discuss some new results on the distribution of such "special points"

on the subvarieties of certain families of abelian varieties. One important aspect of the proof is the interplay of two height functions.

I will give a brief introduction to the theory of heights in the talk.

Subscribe to ETH Zurich