Fri, 11 Apr 2025
12:00
L4

Matrix models and the amplitude/Wilson loop duality

Atul Sharma
(Harvard)
Abstract
I will describe "open-closed-open triality" in the computation of a (holomorphic) Wilson loop correlator in self-dual N=4 SYM uplifted to twistor space. By the amplitude/Wilson loop duality, this generates a matrix model that computes tree amplitudes in N=4 SYM. I will also describe hopes of embedding this matrix model into twisted holography. In particular, I will present a top-down gravitational dual to self-dual N=4 SYM.
 
Thu, 10 Nov 2022
14:00
S1.37

Non-invertible Symmetries in 5d Chern-Simons theories

Eduardo Garcia-Valdecasas
(Harvard)

Note: we would recommend to join the meeting using the Zoom client for best user experience.

Further Information

It is also possible to join online via Zoom.

Abstract

Electric 1-form symmetries are generically broken in gauge theories with Chern-Simons terms. In this talk we discuss how infinite subsets of these symmetries become non-invertible topological defects. Time permitting we will also discuss generalizations and applications to the Swampland program in relation to the completeness hypothesis.

Wed, 27 Apr 2022

14:00 - 15:00
Virtual

Kazhdan-Lusztig Equivalence at the Iwahori Level

Yuchen Fu
(Harvard)
Abstract
We construct an equivalence between Iwahori-integrable representations of affine Lie algebras and representations of the "mixed" quantum group, thus confirming a conjecture by Gaitsgory. Our proof utilizes factorization methods: we show that both sides are equivalent to algebraic/topological factorization modules over a certain factorization algebra, which can then be compared via Riemann-Hilbert. On the quantum group side this is achieved via general machinery of homotopical algebra, whereas the affine side requires inputs from the theory of (renormalized) ind-coherent sheaves as well as compatibility with global geometric Langlands over P1. This is joint work with Lin Chen.
 
Mon, 28 Feb 2022
12:45
Virtual

Comments on scale-separated AdS vacua

Miguel Montero
(Harvard)
Abstract

There have been several proposals of scale-separated AdS vacua in the literature. All known examples arise from the effective field theory of flux compactifications with low supersymmetry, and there are often doubts about their consistency as 10 or 11d backgrounds in string theory. These issues can often be tackled in the bulk theory, or by analysis of the dual CFT via holography. I will review the most common issues, and focus the analysis on the recently constructed family of 3d scale-separated AdS vacua, which is dual to a two-dimensional CFT, emphasizing the discrete symmetry structure of the model in comparison to DGKT. Finally, I will comment on the tantalizing observation of integer operator dimensions in DGKT-like vacua, and comment on possible places to look for consistency issues in these models.

Fri, 19 Nov 2021
16:00
N4.01

Symmetries and Completeness in EFT and Gravity

Jake McNamara
(Harvard)
Further Information

It is also possible to join online via Zoom.

Abstract

We discuss the formal relationship between the absence of global symmetries and completeness, both in effective field theory and in quantum gravity. In effective field theory, we must broaden our notion of symmetry to include non-invertible topological operators. However, in gravity, the story is simplified as the result of charged gravitational solitons.

Mon, 31 May 2021
14:00
Virtual

Non-Invertible Global Symmetries and Completeness of the Spectrum

Irene Valenzuela
(Harvard)
Abstract

It is widely believed that consistent theories of quantum gravity satisfy two basic kinematic constraints: they are free from any global symmetry, and they contain a complete spectrum of gauge charges. For compact, abelian gauge groups, completeness follows from the absence of a 1-form global symmetry. However, this correspondence breaks down for more general gauge groups, where the breaking of the 1-form symmetry is insufficient to guarantee a complete spectrum. We show that the correspondence may be restored by broadening our notion of symmetry to include non-invertible topological operators, and prove that their absence is sufficient to guarantee a complete spectrum for any compact, possibly disconnected gauge group. In addition, we prove an analogous statement regarding the completeness of twist vortices: codimension-2 objects defined by a discrete holonomy around their worldvolume, such as cosmic strings in four dimensions. I will also discuss how this correspondence is modified in more general contexts, including e.g. Chern-Simons terms. 

Thu, 11 Mar 2021

12:30 - 13:30
Virtual

Towards Living Synthetic Matter

Michael Brenner
(Harvard)
Further Information

This final OCIAM seminar of the term takes place slightly later than usual at 12:30 

Abstract

Biological systems provide an inspiration for creating a new paradigm
for materials synthesis. What would it take to enable inanimate material
to acquire the properties of living things? A key difference between
living and synthetic materials is that the former are programmed to
behave as they do, through interactions, energy consumption and so
forth. The nature of the program is the result of billions of years of
evolution. Understanding and emulating this program in materials that
are synthesizable in the lab is a grand challenge. At its core is an
optimization problem: how do we choose the properties of material
components that we can create in the lab to carry out complex reactions?
I will discuss our (not-yet-terribly-successful efforts)  to date to
address this problem, by designing both equiliibrium and kinetic 
properties of materials, using a combination of statistical mechanics,
kinetic modeling and ideas from machine learning.

Fri, 20 Nov 2020
16:00
Virtual

Polarizations and Symmetries of T[M] theories

Du Pei
(Harvard)
Abstract

I will lead an informal discussion centered on discrete data that need to be specified when reducing 6d relative theories on an internal manifold M and how they determine symmetries of the resulting theory T[M].

Subscribe to Harvard