Fri, 10 Nov 2023

12:00 - 13:00

Uncoiled affine and periodic Temperley–Lieb algebra and their Wenzl–Jones projectors

Alexis Langlois-Rémillard
(Hausdorff Center for Mathematics)
Abstract

The affine and periodic Temperley–Lieb algebras are families of infinite-dimensional algebras with a diagrammatic presentation. They have been studied in the last 30 years, mostly for their physical applications in statistical mechanics, where the diagrammatic presentation encodes the connectivity property of the models. Most of the relevant representations for physics are finite-dimensional. In this work, we define finite-dimensional quotients of these algebras, which we name uncoiled algebras in reference to the diagrammatic interpretation of the quotient, and construct a family of Wenzl–Jones idempotents, each of which projects onto one of the one-dimensional modules these algebras admit. We also prove that the uncoiled algebras are sandwich cellular and sketch some of the applications of the objects we defined. This is joint work with Alexi Morin-Duchesne.

Thu, 23 Feb 2023

13:00 - 14:00
L4

Failure of the CD condition in sub-Riemannian and sub-Finsler geometry

Mattia Magnabosco
(Hausdorff Center for Mathematics)
Abstract

The Lott-Sturm-Villani curvature-dimension condition CD(K,N) provides a synthetic notion for a metric measure space to have curvature bounded from below by K and dimension bounded from above by N. It was proved by Juillet that the CD(K,N) condition is not satisfied in a large class of sub-Riemannian manifolds, for every choice of the parameters K and N. In a joint work with Tommaso Rossi, we extended this result to the setting of almost-Riemannian manifolds and finally it was proved in full generality by Rizzi and Stefani. In this talk I present the ideas behind the different strategies, discussing in particular their possible adaptation to the sub-Finsler setting. Lastly I show how studying the validity of the CD condition in sub-Finsler Carnot groups could help in proving rectifiability of CD spaces.

Mon, 10 Oct 2022

16:30 - 17:30
L5

*** Cancelled *** Covariance-Modulated Optimal Transport

Franca Hoffmann
(Hausdorff Center for Mathematics)
Abstract

*** Cancelled *** We study a variant of the dynamical optimal transport problem in which the energy to be minimised is modulated by the covariance matrix of the current distribution. Such transport metrics arise naturally in mean field limits of recent Ensemble Kalman methods for inverse problems. We show how the transport problem splits into two separate minimisation problems: one for the evolution of mean and covariance of the interpolating curve, and one for its shape. The latter consists in minimising the usual Wasserstein length under the constraint of maintaining fixed mean and covariance along the interpolation. We analyse the geometry induced by this modulated transport distance on the space of probabilities, as well as the dynamics of the associated gradient flows. This is joint work of Martin Burger, Matthias Erbar, Daniel Matthes and André Schlichting.

Tue, 12 May 2020

15:30 - 16:30

Interacting particle systems and random walks on Hecke algebras

Alexey Bufetov
(Hausdorff Center for Mathematics)
Abstract

In the last thirty years there was a lot of progress in understanding the asymmetric simple exclusion process (ASEP). Much less is currently known about the multi-species extension of ASEP. In the talk I will discuss the connection of such an extension to random walks on Hecke algebras and its probabilistic applications. 

Fri, 11 Jun 2010

12:30 - 13:30
Gibson 1st Floor SR

Homogenization approximation for PDEs with non-separated scales

Lei Zhang
(Hausdorff Center for Mathematics)
Abstract

Numerical homogenization/upscaling for problems with multiple scales have attracted increasing attention in recent years. In particular, problems with non-separable scales pose a great challenge to mathematical analysis and simulation.

In this talk, we present some rigorous results on homogenization of divergence form scalar and vectorial elliptic equations with $L^\infty$ rough coefficients which allow for a continuum of scales. The first approach is based on a new type of compensation phenomena for scalar elliptic equations using the so-called ``harmonic coordinates''. The second approach, the so-called ``flux norm approach'' can be applied to finite dimensional homogenization approximations of both scalar and vectorial problems with non-separated scales. It can be shown that in the flux norm, the error associated with approximating the set of solutions of the PDEs with rough coefficients, in a properly defined finite-dimensional basis, is equal to the error associated with approximating the set of solutions of the same type of PDEs with smooth coefficients in a standard finite element space. We will also talk about the ongoing work on the localization of the basis in the flux norm approach.

Subscribe to Hausdorff Center for Mathematics