Seminar series
Date
Fri, 11 Jun 2010
Time
12:30 - 13:30
Location
Gibson 1st Floor SR
Speaker
Lei Zhang
Organisation
Hausdorff Center for Mathematics

Numerical homogenization/upscaling for problems with multiple scales have attracted increasing attention in recent years. In particular, problems with non-separable scales pose a great challenge to mathematical analysis and simulation.

In this talk, we present some rigorous results on homogenization of divergence form scalar and vectorial elliptic equations with $L^\infty$ rough coefficients which allow for a continuum of scales. The first approach is based on a new type of compensation phenomena for scalar elliptic equations using the so-called ``harmonic coordinates''. The second approach, the so-called ``flux norm approach'' can be applied to finite dimensional homogenization approximations of both scalar and vectorial problems with non-separated scales. It can be shown that in the flux norm, the error associated with approximating the set of solutions of the PDEs with rough coefficients, in a properly defined finite-dimensional basis, is equal to the error associated with approximating the set of solutions of the same type of PDEs with smooth coefficients in a standard finite element space. We will also talk about the ongoing work on the localization of the basis in the flux norm approach.

Last updated on 3 Apr 2022, 1:32am. Please contact us with feedback and comments about this page.