Tue, 19 Oct 2010

15:45 - 16:45
L3

Finite time singularities for Lagrangian mean curvature flow

Andre Neves
(Imperial)
Abstract

I will show that given smooth embedded Lagrangian L in a Calabi-Yau, one can find a perturbation of L which lies in the same hamiltonian isotopy class and such that the correspondent solution to mean curvature flow develops a finite time singularity. This shows in particular that a simplified version of the Thomas-Yau conjecture does not hold.

Tue, 01 Dec 2009
12:00
L3

On the classification of extremal black holes

James Lucietti
(Imperial)
Abstract

Extremal black holes are of interest as they are expected have simpler quantum descriptions than their non-extremal counterparts.  Any extremal black hole solution admits a well defined notion of a near horizon geometry which solves the same field equations. I will describe recent progress on the general understanding of such near horizon geometries in four and higher dimensions. This will include the proof of near-horizon symmetry enhancement and the explicit classification of near-horizon geometries (in a variety of settings). I will also discuss how one can use such results to prove classification/uniqueness theorems for asymptotically flat extremal vacuum black holes in four and five dimensions.

Fri, 30 Oct 2009
14:15
DH 1st floor SR

Jump-Diffusion Risk-Sensitive Asset Management Mark H.A. Davis, Sebastien Lleo

Mark Davis
(Imperial)
Abstract

This paper considers a portfolio optimization problem in which asset prices are represented by SDEs driven by Brownian motion and a Poisson random measure, with drifts that are functions of an auxiliary diffusion 'factor' process. The criterion, following earlier work by Bielecki, Pliska, Nagai and others, is risk-sensitive optimization (equivalent to maximizing the expected growth rate subject to a constraint on variance.) By using a change of measure technique introduced by Kuroda and Nagai we show that the problem reduces to solving a certain stochastic control problem in the factor process, which has no jumps. The main result of the paper is that the Hamilton-Jacobi-Bellman equation for this problem has a classical solution. The proof uses Bellman's "policy improvement"

method together with results on linear parabolic PDEs due to Ladyzhenskaya et al. This is joint work with Sebastien Lleo.

Mon, 02 Feb 2009
14:15
L3

Apologies, Lecture cancelled

Gabriele Mondello
(Imperial)
Abstract

Open Riemann surfaces and the Weil-Petersson Poisson structure

Fri, 13 Jun 2008
14:15
DH 1st floor SR

Informative Traders

Dorje Brody
(Imperial)
Abstract

A modelling framework is introduced in which there is a small agent who is more susceptible to the flow of information in the market as compared to the general market participants. In this framework market participants have access to a stream of noisy information concerning the future returns of the asset, whereas an informative trader has access to an additional information source which is also obscured by further noise, which may be correlated with the market noise. The informative trader utilises the extraneous information source to seek statistical arbitrage opportunities, in exchange with accommodating the additional risk. The information content of the market concerning the value of the impending cash flow is represented by the mutual information of the asset price and the associated cash flow. The worthiness of the additional information source is then measured in terms of the difference of mutual information between market participants and the informative trader. This difference is shown to be strictly nonnegative for all parameter values in the model, when signal-to-noise ratio is known in advance. Trading strategies making use of the additional information are considered. (Talk is based on joint work with M.H.A. Davis (Imperial) & R.L. Friedman (Imperial & Royal Bank of Scotland).

Mon, 25 Feb 2008
14:45
L3

Topological rigidity and word-hyperbolic groups

Arthur Bartels
(Imperial)
Abstract

The Borel conjecture asserts that aspherical manifolds are topologically rigid, i.e., every homotopy equivalence between such manifolds is homotopic to a homeomorphism. This conjecture is strongly related to the Farrell-Jones conjectures in algebraic K- and L-theory. We will give an introduction to these conjectures and discuss the proof of the Borel conjecture for high-dimensional aspherical manifolds with word-hyperbolic fundamental groups.

Subscribe to Imperial