A short proof of the Göttsche conjecture
Abstract
Counting the number of curves of degree $d$ with $n$ nodes (and no further singularities) going through $(d^2+3d)/2 - n$ points in general position in the projective plane is a problem which was already considered more than 150 years ago. More recently, people conjectured that for sufficiently large $d$ this number should be given by a polynomial of degree $2n$ in $d$. More generally, the Göttsche conjecture states that the number of $n$-nodal curves in a general $n$-dimensional linear subsystem of a sufficiently ample line bundle $L$ on a nonsingular projective surface $S$ is given by a universal polynomial of degree $n$ in the 4 topological numbers $L^2, L.K_S, (K_S)^2$ and $c_2(S)$. In a joint work with Vivek Shende and Richard Thomas, we give a short (compared to existing) proof of this conjecture.
17:00
Finite time singularities for Lagrangian mean curvature flow
Abstract
I will show that given smooth embedded Lagrangian L in a Calabi-Yau, one can find a perturbation of L which lies in the same hamiltonian isotopy class and such that the correspondent solution to mean curvature flow develops a finite time singularity. This shows in particular that a simplified version of the Thomas-Yau conjecture does not hold.
12:00
On the classification of extremal black holes
Abstract
Extremal black holes are of interest as they are expected have simpler quantum descriptions than their non-extremal counterparts. Any extremal black hole solution admits a well defined notion of a near horizon geometry which solves the same field equations. I will describe recent progress on the general understanding of such near horizon geometries in four and higher dimensions. This will include the proof of near-horizon symmetry enhancement and the explicit classification of near-horizon geometries (in a variety of settings). I will also discuss how one can use such results to prove classification/uniqueness theorems for asymptotically flat extremal vacuum black holes in four and five dimensions.
14:15
Jump-Diffusion Risk-Sensitive Asset Management Mark H.A. Davis, Sebastien Lleo
Abstract
This paper considers a portfolio optimization problem in which asset prices are represented by SDEs driven by Brownian motion and a Poisson random measure, with drifts that are functions of an auxiliary diffusion 'factor' process. The criterion, following earlier work by Bielecki, Pliska, Nagai and others, is risk-sensitive optimization (equivalent to maximizing the expected growth rate subject to a constraint on variance.) By using a change of measure technique introduced by Kuroda and Nagai we show that the problem reduces to solving a certain stochastic control problem in the factor process, which has no jumps. The main result of the paper is that the Hamilton-Jacobi-Bellman equation for this problem has a classical solution. The proof uses Bellman's "policy improvement"
method together with results on linear parabolic PDEs due to Ladyzhenskaya et al. This is joint work with Sebastien Lleo.
14:15
Riemann surfaces with conical points: monodromy and the Weil- Petersson Poisson structure
14:15
Apologies, Lecture cancelled
Abstract
Open Riemann surfaces and the Weil-Petersson Poisson structure