Tue, 01 Dec 2009

13:30 - 14:30
Imperial College

(HoRSe seminar at Imperial college) Gauge theory and exceptional holonomy

Simon Donaldson
(Imperial College London)
Abstract

This talk will review material, well-known to specialists, on calibrated geometry and Yang-Mills theory over manifolds with holonomy $SU(3)$, $G_2$ or $Spin(7)$. We will also describe extensions of the standard set-up, modelled on Gromov's "taming forms" for almost-complex structures.

The talk will be held in Room 408, Imperial College Maths Department, Huxley Building, 180 Queen’s Gate, London.

Thu, 28 Jan 2010

16:30 - 17:30
DH 1st floor SR

STEADY STREAMING, VORTEX WAVE INTERACTION THEORY, SELF SUSTAINED PROCESSES AND COHERENT STRUCTURES IN TURBULENT SHEAR FLOWS

Phil Hall
(Imperial College London)
Abstract

Some years ago Hall and Smith in a number of papers developed a theory governing the interaction of vortices and waves in shear flows. In recent years immense interest has been focused on so-called self-sustained processes in turbulent shear flows where the importance of waves interacting with streamwise vortex flows has been elucidated in a number of; see for example the work of Waleffe and colleagues, Kerswell, Gibson, etc. These processes have a striking resemblance to coherent structures observed in turbulent shear flow and for that reason they are often referred to as exact coherent structures. It is shown that the structures associated with the so-called 'lower branch' state, which has been shown to play a crucial role in these self-sustained process, is nothing but a Rayleigh wave vortex interaction with a wave system generating streamwise vortices inside a critical layer. The theory enables the reduction of the 3D Navier Stokes equations to a coupled system for a steady streamwise vortex and an inviscid wave system. The reduced system for the streamwise vortices must be solved with jump conditions in the shear across the critical layer and the position of that layer constitutes a nonlinear pde eigenvalue problem. Remarkable agreement between the asymptotic theory and numerical simulations is found thereby demonstrating the importance of vortex-wave interaction theory in the mathematical description of coherent structures in turbulent shear flows. The theory offers the possibility of drag reduction in turbulent shear flows by controlling the flow to the neighborhood of the lower branch state. The relevance of the work to more general shear flows is also discussed.

Mon, 13 Jul 2009
18:00

Public Lecture in PDE - Analysis, models and simulations

Professor Pierre-Louis Lions
(Imperial College London)
Abstract

In this talk, Professor Lions will first present several examples of numerical simulations of complex industrial systems. All these simulations rely upon some mathematical models involving partial differential equations and he will briefly explain the nature, history and role of such equations. Examples showing the importance of the mathematical analysis (i.e. ‘understanding’) of those models will be presented, concluding with a few trends and perspectives.


Pierre-Louis Lions is the son of the famous mathematician Jacques-Louis Lions and has himself become a renowned mathematician, making numerous important contributions to the theory of non-linear partial differential equations. He was awarded a Fields Medal in 1994, in particular for his work with Ron DiPerna giving the first general proof that the Boltzmann equation of the kinetic theory of gases has solutions. Other awards Lions has received include the IBM Prize in 1987 and the Philip Morris Prize in 1991. Currently he holds the position of Chair of Partial Differential Equations and their Applications at the prestigious Collège de France in Paris.


This lecture is given as part of the 7th ISAAC Congress • www.isaac2009.org

Clore Lecture Theatre, Huxley Building, Imperial College London,
South Kensington Campus, London SW7 2AZ

RSVP: Attendance is free, but with registration in advance
Michael Ruzhansky • @email

Tue, 19 May 2009

14:00 - 15:00
L1

The closed state space of affine Landau-Ginzburg B-models

Ed Segal
(Imperial College London)
Abstract

I'll define the category of B-branes in a LG model, and show that for affine models the Hochschild homology of this category is equal to the physically-predicted closed state space. I'll also explain why this is a step towards proving that LG B-models define TCFTs.

Tue, 04 Nov 2008

15:45 - 16:45
L3

Higher-Genus Gromov-Witten Invariants and Crepant Resolutions

Tom Coates
(Imperial College London)
Abstract

Let X be a Gorenstein orbifold and Y a crepant resolution of

X. Suppose that the quantum cohomology algebra of Y is semisimple. We describe joint work with Iritani which shows that in this situation the genus-zero crepant resolution conjecture implies a higher-genus version of the crepant resolution conjecture. We expect that the higher-genus version in fact holds without the semisimplicity hypothesis.

Mon, 27 Oct 2008
14:15
Oxford-Man Institute

"Decay to equilibrium for linear and nonlinear semigroups"

Prof. Boguslaw Zegarlinski
(Imperial College London)
Abstract

In this talk I will present recent results on ergodicity of Markov semigroups in large dimensional spaces including interacting Levy type systems as well as some R-D models.

Mon, 15 Jan 2007
15:45
DH 3rd floor SR

The Global Error in Weak Approximations of Stochastic Differential Equations

Dr Saadia Ghazali
(Imperial College London)
Abstract

In this talk, the convergence analysis of a class of weak approximations of

solutions of stochastic differential equations is presented. This class includes

recent approximations such as Kusuoka's moment similar families method and the

Lyons-Victoir cubature on Wiener Space approach. It will be shown that the rate

of convergence depends intrinsically on the smoothness of the chosen test

function. For smooth functions (the required degree of smoothness depends on the

order of the approximation), an equidistant partition of the time interval on

which the approximation is sought is optimal. For functions that are less smooth

(for example Lipschitz functions), the rate of convergence decays and the

optimal partition is no longer equidistant. An asymptotic rate of convergence

will also be presented for the Lyons-Victoir method. The analysis rests upon

Kusuoka-Stroock's results on the smoothness of the distribution of the solution

of a stochastic differential equation. Finally, the results will be applied to

the numerical solution of the filtering problem.

 

Subscribe to Imperial College London