Tue, 02 Feb 2021

15:30 - 16:30
Virtual

Universal spectra of random channels and random Lindblad operators

Karol Życzkowski
(Jagiellonian University)
Abstract

We analyze spectral properties of generic quantum operations, which describe open systems under assumption of a strong decoherence and a strong coupling with an environment. In the case of discrete maps the spectrum of a quantum stochastic map displays a universal behaviour: it contains the leading eigenvalue \lambda_1 = 1, while all other eigenvalues are restricted to the disk of radius R<1. Similar properties are exhibited by spectra of their classical counterparts - random stochastic matrices. In the case of a generic dynamics in continuous time, we introduce an ensemble of random Lindblad operators, which generate Markov evolution in the space of density matrices of a fixed size. Universal spectral features of such operators, including the lemon-like shape of the spectrum in the complex plane, are explained with a non-hermitian random matrix model. The structure of the spectrum determines the transient behaviour of the quantum system and the convergence of the dynamics towards the generically unique invariant state. The quantum-to-classical transition for this model is also studied and the spectra of random Kolmogorov operators are investigated.

Fri, 20 Nov 2020

15:00 - 16:00
Virtual

Conley-Morse-Forman theory for generalized combinatorial multivector fields on finite topological spaces

Michał Lipiński
(Jagiellonian University)
Abstract

In this talk, I will present the theory of combinatorial multivector fields for finite topological spaces, the main subject of my thesis. The idea of combinatorial vector fields came from Forman and emerged naturally from discrete Morse theory. Lately, Mrozek generalized it to the multivector fields theory for Lefschetz complexes. In our work, we simplified and extended it to the finite topological spaces settings. We developed a combinatorial counterpart for dynamical objects, such as isolated invariant sets, isolating neighbourhoods, Conley index, limit sets, and Morse decomposition. We proved the additivity property of the Conley index and the Morse inequalities. Furthermore, we applied persistence homology to study the evolution and the stability of Morse decomposition. In the last part of the talk, I will show numerical results and potential future directions from a data-analysis perspective. 

Tue, 03 Nov 2009
12:00
L3

Late-time tails of self-gravitating waves

Piotr Bizon
(Jagiellonian University)
Abstract
I will present recent joint work with Tadek Chmaj and Andrzej Rostworowski concerning late-time behavior of self-gravitating massless fields.  We show that the asymptotic convergence to a static equilibrium (Minkowski or Schwarzschild) is an essentially nonlinear phenomenon which cannot, despite many assertions to the contrary in the literature, be properly described by the theory of linearized perturbations on a fixed static asymptotically flat background (so called Price's tails). To substantiate this claim in the case of small initial data we compute the late-time tails (both the decay rate and the amplitude) in four and higher even spacetime dimensions using nonlinear perturbation theory and we verify the results numerically. The reason for considering this problem in higher dimensions was motivated by the desire to demonstrate an accidental and misleading character of equality of decay rates of
linear and nonlinear tails in four dimensions. 

Subscribe to Jagiellonian University