Semiabelian varieties over separably closed fields
Abstract
Given K a separably closed field of finite ( > 1) degree of imperfection, and semiabelian variety A over K, we study the maximal divisible subgroup A^{sharp} of A(K). We show that the {\sharp} functor does not preserve exact sequences and also give an example where A^{\sharp} does not have relative Morley rank. (Joint work with F. Benoist and E. Bouscaren)