On the Consistency Problem for Quine's New Foundations, NF
Abstract
In 1937 Quine introduced an interesting, rather unusual, set theory called New Foundations - NF for short. Since then the consistency of NF has been a problem that remains open today. But there has been considerable progress in our understanding of the problem. In particular NF was shown, by Specker in 1962, to be equiconsistent with a certain theory, TST^+ of simple types. Moreover Randall Holmes, who has been a long-term investigator of the problem, claims to have solved the problem by showing that TST^+ is indeed consistent. But the working manuscripts available on his web page that describe his possible proofs are not easy to understand - at least not by me.
Some effective instances of relative Manin-Mumford
Abstract
In a series of recent papers David Masser and Umberto Zannier proved the relative Manin-Mumford conjecture for abelian surfaces, at least when everything is defined over the algebraic numbers. In a further paper with Daniel Bertrand and Anand Pillay they have explained what happens in the semiabelian situation, under the same restriction as above.
At present it is not clear that these results are effective. I'll discuss joint work with Philipp Habegger and Masser and with Harry Schimdt in which we show that certain very special cases can be made effective. For instance, we can effectively compute a bound on the order of a root of unity t such that the point with abscissa 2 is torsion on the Legendre curve with parameter t.
**Note change of room**
Ziegler spectra of domestic string algebras
Abstract
Note: joint with Algebra seminar.
String algebras are tame - their finite-dimensional representations have been classified - and the Auslander-Reiten quiver of such an algebra shows some of the morphisms between them. But not all. To see the morphisms which pass between components of the Auslander-Reiten quiver, and so obtain a more complete picture of the category of representations, we should look at certain infinite-dimensional representations and use ideas and techniques from the model theory of modules.
This is joint work with Rosie Laking and Gena Puninski:
G. Puninski and M. Prest, Ringel's conjecture for domestic string algebras, arXiv:1407.7470;
R. Laking, M. Prest and G. Puninski, Krull-Gabriel dimension of domestic string algebras, in preparation.
Ziegler spectra of domestic string algebras
Abstract
String algebras are tame - their finite-dimensional representations have been classified - and the Auslander-Reiten quiver of such an algebra shows some of the morphisms between them. But not all. To see the morphisms which pass between components of the Auslander-Reiten quiver, and so obtain a more complete picture of the category of representations, we should look at certain infinite-dimensional representations and use ideas and techniques from the model theory of modules.
This is joint work with Rosie Laking and Gena Puninski:
G. Puninski and M. Prest, Ringel's conjecture for domestic string algebras, arXiv:1407.7470;
R. Laking, M. Prest and G. Puninski, Krull-Gabriel dimension of domestic string algebras, in preparation.
Convection of a reactive solute in a porous medium
Abstract
Abstract: Motivated loosely by the problem of carbon sequestration in underground aquifers, I will describe computations and analysis of one-sided two-dimensional convection of a solute in a fluid-saturated porous medium, focusing on the case in which the solute decays via a chemical reaction. Scaling properties of the flow at high Rayleigh number are established and rationalized through an asymptotic model, that addresses the transient stability of a near-surface boundary layer and the structure of slender plumes that form beneath. The boundary layer is shown to restrict the rate of solute transport to deep domains. Knowledge of the plume structure enables slow erosion of the substrate of the reaction to be described in terms of a simplified free boundary problem.
Co-authors: KA Cliffe, H Power, DS Riley, TJ Ward
Integer points on globally semi-analytic sets
Abstract
I am interested in integer solutions to equations of the form $f(x)=0$ where $f$ is a transcendental, globally analytic function defined in a neighbourhood of $\infty$ in $\mathbb{R}^n \cup \{\infty\}$. These notions will be defined precisely, and clarified in the wider context of globally semi-analytic and globally subanalytic sets.
The case $n=1$ is trivial (the global assumption forces there to be only finitely many (real) zeros of $f$) and the case $n=2$, which I shall briefly discuss, is completely understood: the number of such integer zeros of modulus at most $H$ is of order $\log\log H$. I shall then go on to consider the situation in higher dimensions.