Fri, 30 Nov 2012

14:30 - 15:30
DH 3rd floor SR

Constructing plankton ecologies (and the library of Lotka)

Dr John Norbury
(Mathematical Insitute, Oxford)
Abstract

Mesocosm experiments provide a major test bed for models of plankton, greenhouse gas export to the atmosphere, and changes to ocean acidity, nitrogen and oxygen levels. A simple model of a mesocosm plankton ecology is given in terms of a set of explicit natural population dynamics rules that exactly conserve a key nutrient. These rules include many traditional population dynamics models ranging from Lotka-Volterra systems to those with more competitors and more trophic levels coupled by nonlinear processes. The rules allow a definition of an ecospace and an analysis of its behaviour in terms of equilibrium points on the ecospace boundary.

Ecological issues such as extinctions, plankton bloom succession, and system resilience can then be analytically studied. These issues are understood from an alternative view point to the usual search for interior equilibrium points and their classification, coupled with intensive computer simulations. Our approach explains why quadratic mortality usually stabilises large scale simulation, but needs to be considered carefully when developing the next generation of Earth System computer models. The ‘Paradox of the Plankton’ and ‘Invasion Theory’ both have alternative, yet straightforward explanations within these rules.

Mon, 11 Oct 2010

16:00 - 17:00
L2

Conics on the Fermat quintic threefold

Damiano Testa
(Mathematical Insitute, Oxford)
Abstract

(Note that the talk will be in L2 and not the usual SR1)

Many interesting features of algebraic varieties are encoded in the spaces of rational curves that they contain. For instance, a smooth cubic surface in complex projective three-dimensional space contains exactly 27 lines; exploiting the configuration of these lines it is possible to find a (rational) parameterization of the points of the cubic by the points in the complex projective plane.

After a general overview, we focus on the Fermat quintic threefold X, namely the hypersurface in four-dimensional projective space with equation x^5+y^5+z^5+u^5+v^5=0. The space of lines on X is well-known. I will explain how to use a mix of algebraic geometry, number theory and computer-assisted calculations to study the space of conics on X.

This talk is based on joint work with R. Heath-Brown.

Mon, 01 Jun 2009

16:00 - 17:00
SR1

Introduction to the Birch--Swinnerton-Dyer Conjecture. III: Average ranks, the Artin--Tate conjecture and function fields.

George Walker
(Mathematical Insitute, Oxford)
Abstract

In the previous talks we have seen the formulation of the Birch--Swinnerton-Dyer conjecture. This talk will focus on a fundamental question in diophantine geometry. Namely, given an algebraic curve \textit{C} defined over $\mathbb{Q}$ possessing at least one rational point, what is

the probability that \textit{C} has infinitely many rational points?

For curves of genus 0, the answer has been known ever since the ancient Greeks roamed the earth, and for genus > 1 the answer is also known (albeit for a much shorter time). The remaining case is genus 1, and this question has a history filled with tension and

conflict between data and conjecture.

I shall describe the heuristics behind the conjectures, taking into account the Birch--Swinnerton-Dyer Conjecture and the Parity Conjecture. I shall go on to outline the contrary numeric data, both in families of elliptic curves and for all elliptic curves of increasing conductor.

If one instead considers elliptic curves over function fields $\mathbb{F}_{q} (t)$, then, via a conjecture of Artin and Tate, one can compute the rank (and more) of elliptic curves of extremely large discriminant degree. I shall briefly describe the interplay between Artin--Tate and

Birch--Swinnerton-Dyer, and give new evidence finally supporting the conjecture.

Subscribe to Mathematical Insitute, Oxford