Thu, 09 May 2024
16:00
L4

Signature Trading: A Path-Dependent Extension of the Mean-Variance Framework with Exogenous Signals

Owen Futter
(Mathematical Institute)
Further Information

Please join us for reshments outside the lecture room from 1530.

Abstract

In this seminar we introduce a portfolio optimisation framework, in which the use of rough path signatures (Lyons, 1998) provides a novel method of incorporating path-dependencies in the joint signal-asset dynamics, naturally extending traditional factor models, while keeping the resulting formulas lightweight, tractable and easily interpretable. Specifically, we achieve this by representing a trading strategy as a linear functional applied to the signature of a path (which we refer to as “Signature Trading” or “Sig-Trading”). This allows the modeller to efficiently encode the evolution of past time-series observations into the optimisation problem. In particular, we derive a concise formulation of the dynamic mean-variance criterion alongside an explicit solution in our setting, which naturally incorporates a drawdown control in the optimal strategy over a finite time horizon. Secondly, we draw parallels between classical portfolio stategies and Sig-Trading strategies and explain how the latter leads to a pathwise extension of the classical setting via the “Signature Efficient Frontier”. Finally, we give explicit examples when trading under an exogenous signal as well as examples for momentum and pair-trading strategies, demonstrated both on synthetic and market data. Our framework combines the best of both worlds between classical theory (whose appeal lies in clear and concise formulae) and between modern, flexible data-driven methods (usually represented by ML approaches) that can handle more realistic datasets. The advantage of the added flexibility of the latter is that one can bypass common issues such as the accumulation of heteroskedastic and asymmetric residuals during the optimisation phase. Overall, Sig-Trading combines the flexibility of data-driven methods without compromising on the clarity of the classical theory and our presented results provide a compelling toolbox that yields superior results for a large class of trading strategies.

This is based on works with Blanka Horvath and Magnus Wiese.

Thu, 29 Feb 2024
16:00
L3

Martingale Benamou-Brenier: arthimetic and geometric Bass martingales

Professor Jan Obloj
(Mathematical Institute)
Further Information

Please join us for refreshments outside L3 from 1530.

Abstract

Optimal transport (OT) proves to be a powerful tool for non-parametric calibration: it allows us to take a favourite (non-calibrated) model and project it onto the space of all calibrated (martingale) models. The dual side of the problem leads to an HJB equation and a numerical algorithm to solve the projection. However, in general, this process is costly and leads to spiky vol surfaces. We are interested in special cases where the projection can be obtained semi-analytically. This leads us to the martingale equivalent of the seminal fluid-dynamics interpretation of the optimal transport (OT) problem developed by Benamou and Brenier. Specifically, given marginals, we look for the martingale which is the closest to a given archetypical model. If our archetype is the arithmetic Brownian motion, this gives the stretched Brownian motion (or the Bass martingale), studied previously by Backhoff-Veraguas, Beiglbock, Huesmann and Kallblad (and many others). Here we consider the financially more pertinent case of Black-Scholes (geometric BM) reference and show it can also be solved explicitly. In both cases, fast numerical algorithms are available.

Based on joint works with Julio Backhoff, Benjamin Joseph and Gregoire Leoper.  

This talk reports a work in progress. It will be done on a board.

Tue, 20 Feb 2024
11:00
Lecture room 5

The flow equation approach to singular SPDEs.

Massimiliano Gubinelli
(Mathematical Institute)
Abstract

I will give an overview of a recent method introduced by P. Duch to solve some subcritical singular SPDEs, in particular the stochastic quantisation equation for scalar fields. 

Tue, 23 Jan 2024
11:00
L5

Wilson-Ito diffusions

Massimiliano Gubinelli
(Mathematical Institute)
Abstract

In a recent preprint, together with Bailleul and Chevyrev we introduced a class of random fields which try to model the basic properties of quantum fields. I will try to explain the basic ideas and some of the many open problems.

To read the preprint, please click here.

Fri, 26 Jan 2024

15:00 - 16:00
L5

Expanding statistics in phylogenetic tree space

Gillian Grindstaff
(Mathematical Institute)
Abstract
For a fixed set of n leaves, the moduli space of weighted phylogenetic trees is a fan in the n-pointed metric cone. As introduced in 2001 by Billera, Holmes, and Vogtmann, the BHV space of phylogenetic trees endows this moduli space with a piecewise Euclidean, CAT(0), geodesic metric. This has be used to define a growing number of statistics on point clouds of phylogenetic trees, including those obtained from different data sets, different gene sequence alignments, or different inference methods. However, the combinatorial complexity of BHV space, which can be most easily represented as a highly singular cube complex, impedes traditional optimization and Euclidean statistics: the number of cubes grows exponentially in the number of leaves. Accordingly, many important geometric objects in this space are also difficult to compute, as they are similarly large and combinatorially complex. In this talk, I’ll discuss specialized regions of tree space and their subspace embeddings, including affine hyperplanes, partial leaf sets, and balls of fixed radius in BHV tree space. Characterizing and computing these spaces can allow us to extend geometric statistics to areas such as supertree contruction, compatibility testing, and phylosymbiosis.


 

Fri, 19 Jan 2024
16:00
L1

Mathematical Societies and Organisations

Chris Breward, Sam Cohen, Rebecca Crossley, Dawid Kielak and Ulrike Tillmann
(Mathematical Institute)
Abstract
Mathematical societies and organisations run exciting academic activities and provide important funding opportunities. This session will include presentations on the London Mathematical Society (by LMS Rep Dawid Kielak), the Institute of Mathematics and its Applications (by Chris Breward), the Society for Industrial and Applied Mathematics (by Sam Cohen and Becky Crossley) and the Isaac Newton Institute (by its Director, Ulrike Tillmann).
 
The event will be followed by free pizza.
Tue, 28 Nov 2023
11:00
Lecture Room 4

Random surfaces and higher algebra

Darrick Lee
(Mathematical Institute)
Abstract

A representation on the space of paths is a map which is compatible with the concatenation operation of paths, such as the path signature and Cartan development (or equivalently, parallel transport), and has been used to define characteristic functions for the law of stochastic processes. In this talk, we consider representations of surfaces which are compatible with the two distinct algebraic operations on surfaces: horizontal and vertical concatenation. To build these representations, we use the notion of higher parallel transport, which was first introduced to develop higher gauge theories. We will not assume any background in geometry or category theory. Based on a preprint (https://arxiv.org/abs/2311.08366) with Harald Oberhauser.

 

Tue, 21 Nov 2023
11:00
L1

Singularity Detection from a Data "Manifold"

Uzu Lim
(Mathematical Institute)

Note: we would recommend to join the meeting using the Teams client for best user experience.

Abstract

High-dimensional data is often assumed to be distributed near a smooth manifold. But should we really believe that? In this talk I will introduce HADES, an algorithm that quickly detects singularities where the data distribution fails to be a manifold.

By using hypothesis testing, rather than persistent homology, HADES achieves great speed and a strong statistical foundation. We also have a precise mathematical theorem for correctness, proven using optimal transport theory and differential geometry. In computational experiments, HADES recovers singularities in synthetic data, road networks, molecular conformation space, and images.

Paper link: https://arxiv.org/abs/2311.04171
Github link: https://github.com/uzulim/hades
 

Subscribe to Mathematical Institute