Tue, 07 Apr 2020
14:00
Virtual

Hipster random walks and their ilk

Louigi Addario-Berry
(McGill)
Further Information

Part of the Oxford Discrete Maths and Probability Seminar, held via Zoom. Please see the seminar website for details.

Abstract

I will describe how certain recursive distributional equations can be solved by using tools from numerical analysis on the convergence of approximation schemes for PDEs. This project is joint work with Luc Devroye, Hannah Cairns, Celine Kerriou, and Rivka Maclaine Mitchell.

Wed, 06 Mar 2013

10:15 - 11:15
OCCAM Common Room (RI2.28)

Using mathematics to understand, treat, and avoid hematological disease

Prof. Michael Mackey
(McGill)
Abstract

In this talk aimed at a general audience I will discuss the ways in which we have used mathematical models of the regulation of haematopoiesis (blood cell production) to understand haematological diseases, and suggest successful treatment strategies for these diseases. At the end I will talk about our current work on tailoring chemotherapy so that it has less damaging effects on the haematopoietic system and, consequently, improve the quality of life for patients being treated for a variety of tumours.

Fri, 28 Sep 2012

14:00 - 15:00
L1

p-adic iterated integrals and rational points on elliptic curves

Henri Darmon
(McGill)
Abstract

The $p$-adic Gross-Zagier formula for diagonal cycles and the $p$-adic Beilinson formulae described in the lectures of Rotger and Bertolini respectively suggest a connection between certain  {\em $p$-adic iterated integrals} attached to modular forms and rational points on elliptic curves. I will describe an ongoing project (in collaboration with Alan Lauder and Victor Rotger) whose goal is to explore these relationships numerically, with the goal of better understanding the notion of {\em Stark-Heegner points}. It is hoped that these experiments might suggest new perspectives on Stark-Heegner points based on suitable {\em $p$-adic deformations} of the global objects--diagonal cycles, Beilinson-Kato and Beilinson-Flach elements-- described in the lectures of Rotger, Bertolini, Dasgupta, and Loeffler, following  the influential approach to $p$-adic $L$-functions pioneered by Coates-Wiles, Kato, and Perrin-Riou.

Tue, 03 May 2011

14:30 - 15:30
L3

Hajos’ Conjecture is almost always true

Bruce Reed
(McGill)
Abstract

In 1961 Hajos conjectured that if a graph contains no subdivsion of a clique of order t then its chromatic number is less than t. In 1981, Erdos and Fajtlowicz showed that the conjecture is almost always false. We show it is almost always true. This is joint work with Keevash, Mohar, and McDiarmid.

Tue, 13 Oct 2009

14:30 - 15:30
L3

Prim's algorithm and self-organized criticality, in the complete graph

Louigi Addario-Berry
(McGill)
Abstract

Let $G=(V,E)$ be a graph with weights $\{w_e : e \in E\}$, and assume all weights are distinct. If $G$ is finite, then the well-known Prim's algorithm constructs its minimum spanning tree in the following manner. Starting from a single vertex $v$, add the smallest weight edge connecting $v$ to any other vertex. More generally, at each step add the smallest weight edge joining some vertex that has already been "explored" (connected by an edge) to some unexplored vertex.

If $G$ is infinite, however, Prim's algorithm does not necessarily construct a spanning tree (consider, for example, the case when the underlying graph is the two-dimensional lattice ${\mathbb Z}^2$, all weights on horizontal edges are strictly less than $1/2$ and all weights on vertical edges are strictly greater than $1/2$).

The behavior of Prim's algorithm for *random* edge weights is an interesting and challenging object of study, even
when the underlying graph is extremely simple. This line of research was initiated by McDiarmid, Johnson and Stone (1996), in the case when the underlying graph is the complete graph $K_n$. Recently Angel et. al. (2006) have studied Prim's algorithm on regular trees with uniform random edge weights. We study Prim's algorithm on $K_n$ and on its infinitary analogue Aldous' Poisson-weighted infinite tree. Along the way, we uncover two new descriptions of the Poisson IIC, the critical Poisson Galton-Watson tree conditioned to survive forever.

Joint work with Simon Griffiths and Ross Kang.

Tue, 03 Feb 2009

14:30 - 15:30
L3

The t-dependence and t-improper chromatic numbers of random graphs

Ross Kang
(McGill)
Abstract

We consider a natural generalisation of the independence and chromatic numbers and study their behaviour in Erdos-Renyi random graphs. The t-dependence number of a graph G is the size of the largest subset of the vertices of G whose induced subgraph has maximum degree at most t. The t-improper chromatic number of G is the smallest number of parts needed in a partition of the vertex set of G such that each part induces a subgraph of maximum degree at most t. Clearly, when t = 0, these parameters are, respectively, the independence and chromatic numbers of G. For dense random graphs, we determine the asymptotic ehaviour of these parameters over the range of choices for the growth of t as a function of the number of vertices.

This is joint work with Nikolaos Fountoulakis and Colin McDiarmid.

Tue, 16 Oct 2007
16:30
SR1

The structure and profile of digital trees

Nicolas Broutin
(McGill)
Abstract

Digital trees is a general structure to manipulate sequences of characters. We propose a novel approach to the structure of digital trees.

It shades some new light on the profile of digital trees, and provides a unified explanation of the relationships between different kinds of digital trees. The idea relies on the distinction of nodes based on their type, i.e., the set of their children. Only two types happen to matter when studying the number of nodes lying at a specified level: the nodes with a full set of children which constitutes the core, and the nodes with a single child producing spaghetti-like trees hanging down the core. We will explain the distinction and its applications on a number of examples related to data structures such as the TST of Bentley and Sedgewick.

This is joint work with Luc Devroye.

Subscribe to McGill