Singular Soergel Bimodules
Abstract
To any Coxeter group (W,S) together with an appropriate representation on V one may associate various categories of "singular Soergel bimodules", which are certain bimodules over invariant subrings of
regular functions on V. I will discuss their definition, basic properties and explain how they categorify the associated Hecke algebras and their parabolic modules. I will also outline a motivation coming from geometry and (if time permits) an application in knot theory.
Strategy Improvement for Parity Games: A combinatorial perspective
Abstract
In this talk I will discuss how the problem of finding a winner in a parity game can be reduced to the problem of locally finding a global sink on an acyclic unique sink oriented hypercube. As a consequence, we can improve (albeit only marginally) the bounds of the strategy improvement algorithm.
This talk is similar to one I presented at the InfoSys seminar in the Computing Laboratory in October.
Introduction to Deformation Theory
Abstract
In this talk I will discuss some elementary notions of deformation theory in algebraic geometry like Schlessinger's Criterion. I will describe obstructions and deformations of sheaves in detail and will point out relations to moduli spaces of sheaves.
The construction of ample <2>-polarised K3-fibrations
Abstract
Fibrations are a valuable tool in the study of the geometry of higher dimensional algebraic varieties. By expressing a higher dimensional variety as a fibration by lower dimensional varieties, we can deduce much about its properties. Whilst the theory of elliptic fibrations is very well developed, fibrations by higher dimensional varieties, especially K3 surfaces, are only just beginning to be studied. In this talk I study a special case of the K3-fibration, where the general fibres admit a <2>-polarisation and the base of the fibration is a nonsingular curve.
Dependent Pairs
Abstract
I will prove that certain pairs of ordered structures are dependent. There are basically two cases depending on whether the smaller structure is dense or discrete. I will discuss the proofs of two quite general theorems which construe the dividing line between these cases. Among examples are dense pairs of o-minimal structures in the first case, and tame pairs of o-minimal structures in the latter. This is joint work with P. Hieronymi.
On Mason's theorem: algebraically special metrics cannot be asymptotically simple
Introduction to G_2 geometry (Part II)
Abstract
I will give a survey-type introduction to manifolds equipped with $G_2$ structures, emphasizing the similarities and differences with Riemannian manifolds equipped with almost complex structures, and with oriented Riemannian 3-manifolds. Along the way I may discuss the Berger classification of Riemannian holonomy, the Calabi-Yau theorem, exceptional geometric structures arising from the algebra of the Octonions, and calibrated submanifolds. This talk is the second of two parts.
Introduction to G_2 geometry (Part I)
Abstract
I will give a survey-type introduction to manifolds equipped with $G_2$ structures, emphasizing the similarities and differences with Riemannian manifolds equipped with almost complex structures, and with oriented Riemannian 3-manifolds. Along the way I may discuss the Berger classification of Riemannian holonomy, the Calabi-Yau theorem, exceptional geometric structures arising from the algebra of the Octonions, and calibrated submanifolds. This talk will be in two parts.