Mon, 13 Oct 2008
14:15
Oxford-Man Institute

Drift, draft and structure: modelling evolution in a spatial continuum.

Prof. Alison Etheridge
(Oxford)
Abstract

One of the outstanding successes of mathematical population genetics is Kingman's coalescent. This process provides a simple and elegant description of the genealogical trees relating individuals in a sample of neutral genes from a panmictic population, that is, one in which every individual is equally likely to mate with every other and all individuals experience the same conditions. But real populations are not like this. Spurred on by the recent flood of DNA sequence data, an enormous industry has developed that seeks to extend Kingman's coalescent to incorporate things like variable population size, natural selection and spatial and genetic structure. But a satisfactory approach to populations evolving in a spatial continuum has proved elusive. In this talk we describe the effects of some of these biologically important phenomena on the genealogical trees before describing a new approach (joint work with Nick Barton, IST Austria) to modelling the evolution of populations distributed in a spatial continuum.

Wed, 12 Nov 2008
16:00
L3

'Two-point sets and the Axiom of Choice'.

Ben Chad
(Oxford)
Abstract

'A two-point set is a subset of the plane which meets every line in exactly two points. The existence of two-point sets was shown by Mazurkiewicz in 1914, and the main open problem concerning these objects is to determine if there exist Borel two-point sets. If this question has a positive answer, then we most likely need to be able to construct a two-point set without making use of a well-ordering of the real line, as is currently the usual technique.

We discuss recent work by Robin Knight, Rolf Suabedissen and the speaker, and (independently) by Arnold Miller, which show that it is consistent with ZF that the real line cannot be well-ordered and also that two-point sets exist.'

Thu, 30 Oct 2008

13:00 - 14:00
DH 1st floor SR

Portfolio Choice via Quantiles

Xunyu Zhou
(Oxford)
Abstract

A new portfolio choice model in continuous time is formulated and solved, where the quantile function of the terminal cash flow, instead of the cash flow itself, is taken as the decision variable. This formulation covers and leads to solutions to many existing and new models including expected utility maximisation, mean-variance, goal reaching, VaR and CVaR, Yaari's dual model, Lopes' SP/A model, and behavioural model under prospect theory.

Thu, 23 Oct 2008

14:30 - 15:30
L3

Vertices of simple modules for symmetric groups

Susanne Danz
(Oxford)
Abstract

We consider the symmetric group S_n of degree n and an algebraically

closed field F of prime characteristic p.

As is well-known, many representation theoretical objects of S_n

possess concrete combinatorial descriptions such as the simple

FS_n-modules through their parametrization by the p-regular partitions of n,

or the blocks of FS_n through their characterization in terms of p-cores

and p-weights. In contrast, though closely related to blocks and their

defect groups, the vertices of the simple FS_n-modules are rather poorly

understood. Currently one is far from knowing what these vertices look

like in general and whether they could be characterized combinatorially

as well.

In this talk I will refer to some theoretical and computational

approaches towards the determination of vertices of simple FS_n-modules.

Moreover, I will present some results concerning the vertices of

certain classes of simple FS_n-modules such as the ones labelled by

hook partitions or two part partitions, and will state a series of

general open questions and conjectures.

Mon, 13 Oct 2008

17:00 - 18:00
Gibson 1st Floor SR

Liouville type theorems for Navier-Stokes equations

Gregory Seregin
(Oxford)
Abstract

In the lecture, I am going to explain a connection between

local regularity theory for the Navier-Stokes equations

and Liouville type theorems for bounded ancient solutions to

these equations.

Subscribe to Oxford