Techniques for one-loop amplitudes in QCD
Abstract
$G_2$ manifolds with isolated conical singularities
Abstract
16:00
14:15
Generalized Donaldson-Thomas invariants. II. Invariants and transformation laws.
Abstract
This is the second of two seminars this afternoon describing a generalization of Donaldson-Thomas invariants, joint work of Yinan Song and Dominic Joyce. (Still work in progress.)
Behrend showed that conventional Donaldson-Thomas invariants can be written as the Euler characteristic of the moduli space of semistable sheaves weighted by a "microlocal obstruction function" \mu.
In previous work, the speaker defined Donaldson-Thomas type invariants "counting" coherent sheaves on a Calabi-Yau 3-fold using
Euler characteristics of sheaf moduli spaces, and more generally, of moduli spaces of "configurations" of sheaves. However, these invariants are not deformation-invariant.
We now combine these ideas, and insert Behrend's microlocal obstruction \mu into the speaker's previous definition to get new generalized Donaldson-Thomas invariants. Microlocal functions \mu have a multiplicative property implying that the new invariants transform according to the same multiplicative transformation law as the previous invariants under change of stability condition.
Then we show that the invariants counting pairs in the previous seminar are sums of products of the new generalized Donaldson-Thomas invariants. Since the pair invariants are deformation invariant, we can deduce by induction on rank that the new generalized Donaldson-Thomas invariants are unchanged under deformations of the underlying Calabi-Yau 3-fold.
Generalized Donaldson-Thomas invariants. I. An invariant counting pairs.
Abstract
This is the first of two seminars this afternoon describing a generalization of Donaldson-Thomas invariants, joint work of Yinan Song and Dominic Joyce. We shall define invariants "counting" semistable coherent sheaves on a Calabi-Yau 3-fold. Our invariants are invariant under deformations of the complex structure of the underlying Calabi-Yau 3-fold, and have known transformation law under change of stability condition.
This first seminar constructs an auxiliary invariant "counting" stable pairs (s,E), where E is a Gieseker semistable coherent sheaf with fixed Hilbert polynomial and s : O(-n) --> E for n >> 0 is a morphism of sheaves, and (s,E) satisfies a stability condition. Using Behrend-Fantechi's approach to obstruction theories and virtual classes we prove this auxiliary invariant is unchanged under deformation of the underlying Calabi-Yau 3-fold.
14:15
Malliavin calculus and rough paths
Abstract
We present the ideas of Malliavin calculus in the context of rough differential equations (RDEs) driven by Gaussian signals. We then prove an analogue of Hörmander's theorem for this set-up, finishing with the conclusion that, for positive times, a solution to an RDE driven by Gaussian noise will have a density with respect to Lebesgue measure under Hörmander's conditions on the vector fields.
15:45
The Navier Stokes equation and the Absolute Boundary condition
Abstract
Let u be a vector field on a bounded domain in R^3. The absolute boundary condition states that both the normal part of u and the tangential part of curl(u) vanish on the boundary. After motivating the use of this condition in the context of the Navier Stokes equation, we prove local (in time) existence with this boundary behaviour. This work is together with Dr. Z. Qian and Prof. G. Q. Chen, Northwestern University.