14:45
Quadratic forms and cobordisms
Abstract
Taking the intersection form of a 4n-manifold defines a functor from a category of cobordisms to a symmetric monoidal category of quadratic forms. I will present the theory of the Maslov index and some higher-categorical constructions as variations on this theme.
10:00
Finite Fields and Model Theory
Abstract
In these (three) lectures, I will discuss the following topics:
1. The theorems of Ax on the elementary theory of finite and pseudo-finite fields, including decidability and quantifier-elimination, variants due to Kiefe, and connection to Diophantine problems.
2. The theorems on Chatzidakis-van den Dries-Macintyre on definable sets over finite and pseudo-finite fields, including their estimate for the number of points of definable set over a finite field which generalizes the Lang-Weil estimates for the case of a variety.
3. Motivic and p-adic aspects.
10:00
Finite Fields and Model Theory
Abstract
In these (three) lectures, I will discuss the following topics:
1. The theorems of Ax on the elementary theory of finite and pseudo-finite fields, including decidability and quantifier-elimination, variants due to Kiefe, and connection to Diophantine problems.
2. The theorems on Chatzidakis-van den Dries-Macintyre on definable sets over finite and pseudo-finite fields, including their estimate for the number of points of definable set over a finite field which generalizes the Lang-Weil estimates for the case of a variety.
3. Motivic and p-adic aspects.
Yang-Mills Theory in Twistor Space
Abstract
Algorithmic algebraic geometry, flux vacua and the STRINGVACUA Mathematica package
Abstract
Special Geometry over $\mathbb C$ and $\mathbb Q_p$
Abstract
14:15
Small subgroups of the circle group
Abstract
There is a well-behaving class of dense ordered abelian groups called "regularly dense ordered abelian groups". This first order property of ordered abelian groups is introduced by Robinson and Zakon as a generalization of being an archimedean ordered group. Every dense subgroup of the additive group of reals is regularly dense. In this talk we consider subgroups of the multiplicative group, S, of all complex numbers of modulus 1. Such groups are not ordered, however they have an "orientation" on them: this is a certain ternary relation on them that is invariant under multiplication. We have a natural correspondence between oriented abelian groups, on one side, and ordered abelian groups satisfying a cofinality condition with respect to a distinguished positive element 1, on the other side. This correspondence preserves model-theoretic relations like elementary equivalence. Then we shall introduce a first-order notion of "regularly dense" oriented abelian group; all infinite subgroups of S are regularly dense in their induced orientation. Finally we shall consider the model theoretic structure (R,Gamma), where R is the field of real numbers, and Gamma is dense subgroup of S satisfying the Mann property, interpreted as a subset of R^2. We shall determine the elementary theory of this structure.