Mon, 15 Oct 2018
12:45
L3

Modular graph functions as iterated Eisenstein integrals

Erik Panzer
(Oxford)
Abstract

Superstring scattering amplitudes in genus one have a low-energy expansion in terms of certain real analytic modular forms, called modular graph functions (D'Hoger, Green, Gürdogan and Vanhove). I will sketch the proof that these functions belong to a family of iterated integrals of modular forms (a generalization of Eichler integrals), recently introduced by Francis Brown, which explains many of their properties. The main tools are elliptic multiple polylogarithms (Brown and Levin), single-valued versions thereof, and elliptic multiple zeta values (Enriquez).

Tue, 16 Oct 2018
16:00
L5

On decidability in local and global fields

Jochen Koenigsmann
(Oxford)
Abstract

This is a survey on recent advances in classical decidability issues for local and global fields and for some canonical infinite extensions of those.

Mon, 08 Oct 2018
12:45
L3

Twisted indices of 3d N=4 theories and moduli space of quasi-maps

Heeyeon Kim
(Oxford)
Abstract

I will talk about the Witten index of supersymmetric quantum mechanics obtained from 3d gauge theories compacted on a Riemann surface. In particular, I will show that the twisted indices of 3d N=4 theories compute enumerative invariants of the moduli space, which can be identified as a space of quasi-maps to the Higgs branch. I will also discuss 3d mirror symmetry in this context which provides a non-trivial relation between a pair of generating functions of the invariants.

Tue, 09 Oct 2018

14:00 - 14:30
L5

Efficient white noise sampling and coupling for multilevel Monte Carlo

Matteo Croci
(Oxford)
Abstract

When solving stochastic partial differential equations (SPDEs) driven by additive spatial white noise the efficient sampling of white noise realizations can be challenging. In this talk we present a novel sampling technique that can be used to efficiently compute white noise samples in a finite element and multilevel Monte Carlo (MLMC) setting.
After discretization, the action of white noise on a test function yields a Gaussian vector with the FEM mass matrix as covariance. Sampling such a vector requires an expensive Cholesky factorization and for this reason P0 representations, for which the mass matrix is diagonal, are generally preferred in the literature. This however has other disadvantages. In this talk we introduce an alternative factorization that is naturally parallelizable and has linear cost and memory complexity (in the number of mesh elements).
Moreover, in a MLMC framework the white noise samples must be coupled between subsequent levels so as to respect the telescoping sum. We show how our technique can be used to enforce this coupling even in the case in which the hierarchy is non-nested via a supermesh construction. We conclude the talk with numerical experiments that demonstrate the efficacy of our method. We observe optimal convergence rates for the finite element solution of the elliptic SPDEs of interest. In a MLMC setting, a good coupling is enforced and the telescoping sum is respected.
 

Tue, 09 Oct 2018

14:30 - 15:00
L5

Drying of Colloid Suspension

Zhen Shao
(Oxford)
Abstract

The next generation emissive displays including quantum dot LED(QLED) and organic LED(OLED) could be efficiently manufactured by inkjet printing, where nano-scale droplets are injected in banked substrate and after evaporation they leave layers of thin film that forms pixels of a display. This novel manufacturing method would greatly reduce cost and improve reliability. However, it is observed in practice that the deposit becomes much thicker near the bank edge and emission is faint there. This motivated the project and in this talk, we will mathematically model the phenomeno, understand its origin and investigate ways of making more uniform deposit by means of simulation.

Tue, 20 Nov 2018

15:45 - 16:45
L4

A Steenrod-square-type operation for quantum cohomology and Floer theory

Nicholas Wilkins
(Oxford)
Abstract

The (total) Steenrod square is a ring homomorphism from the cohomology of a topological space to the Z/2-equivariant cohomology of this space, with the trivial Z/2-action. Given a closed monotone symplectic manifold, one can define a deformed notion of the Steenrod square for quantum cohomology, which will not in general be a ring homomorphism, and prove some properties of this operation that are analogous to properties of the classical Steenrod square. We will then link this, in a more general setting, to a definition by Seidel of a similar operation on Floer cohomology.
 

Tue, 09 Oct 2018

14:15 - 15:30
L4

Abstract regular polytopes and Y-shaped presentations for subgroups of the Monster sporadic simple group

Dima Pasechnik
(Oxford)
Abstract

Abstract regular polytopes are finite quotients of Coxeter complexes
with string diagram, satisfying a natural intersection property, see
e.g. [MMS2002]. They arise in a number of geometric and group-theoretic
contexts. The first class of such objects, beyond the
well-understood examples coming from finite and affine Coxeter groups,
are locally toroidal cases, e.g.  extensions of quotients of the affine
F_4 complex [3,3,4,3].  In 1996 P.McMullen & E.Schulte constructed a
number of examples of locally toroidal abstract regular polytopes of
type [3,3,4,3,3], and conjectured completeness of their list. We
construct counterexamples to the conjecture using a Y-shaped
presentation for a subgroup of the Monster, and discuss various
related questions.
 

Mon, 29 Oct 2018

14:15 - 15:15
L4

Differentiable chiral and factorisation algebras

Kobi Kremnitzer
(Oxford)
Abstract

The Beilinson-Drinfeld Grassmannian, which classifies a G-bundle trivialised away from a finite set of points on a curve, is one of the basic objects in the geometric Langlands programme. Similar construction in higher dimensions in the algebraic and analytic settings are not very interesting because of Hartogs' theorem. In this talk I will discuss a differentiable version. I will also explain a theory of D-modules on differentiable spaces and use it
to define differentiable chiral and factorisation algebras. By linearising the Grassmannian we get examples of differentiable chiral algebras. This is joint work with Dennis Borisov.

 

Mon, 08 Oct 2018

14:15 - 15:15
L4

Moment maps and non-reductive geometric invariant theory

Frances Kirwan
(Oxford)
Abstract
When a complex reductive group acts linearly on a projective variety, the GIT quotient can be identified with an appropriate symplectic quotient. The aim of this talk is to discuss an analogue of this description for GIT quotients by suitable non-reductive actions. In general GIT for non-reductive linear algebraic group actions is much less well behaved than for reductive actions. However when the unipotent radical U of a linear algebraic group is graded, in the sense that a Levi subgroup has a central one-parameter subgroup which acts by conjugation on U with all weights strictly positive, then GIT for a linear action of the group on a projective variety has better properties than in the general case, and (at least under some additional conditions) we can ask for moment map descriptions of the quotients.
Subscribe to Oxford