Mon, 14 Nov 2016
15:45
L6

Some concordance invariants from knot Floer homology

Daniele Celoria
(Oxford)
Abstract

(Joint work with Marco Golla and József Bodnár)
We will give a general overview of the plethora of concordance invariants which can be extracted from Ozsváth-Szabó-Rasmussen's knot Floer homology. 
We will then focus on the $\nu^+$ invariant and prove some of its useful properties. 
Furthermore we will show how it can be used to obstruct the existence of cobordisms between algebraic knots.

Mon, 31 Oct 2016

15:45 - 16:45
L6

Cobordism maps in knot Floer homology

Andras Juhasz
(Oxford)
Abstract

Decorate knot cobordisms functorially induce maps on knot Floer homology.
We compute these maps for elementary cobordisms, and hence give a formula for 
the Alexander and Maslov grading shifts. We also show a non-vanishing result in the case of
concordances and present some applications to invertible concordances. 
This is joint work with Marco Marengon.
 

Mon, 10 Oct 2016

15:45 - 16:45
L6

The 2-Trace

Chris Douglas
(Oxford)
Abstract

 
The dimension of a finite-dimensional vector space V can be computed as the trace of the identity endomorphism id_V.  This dimension is also the value F_V(S^1) of the circle in the 1-dimensional field theory F_V associated to the vector space.  The trace of any endomorphism f:V-->V can be interpreted as the value of that field theory on a circle with a defect point labeled by the endomorphism f.  This last invariant makes sense even when the vector space is infinite-dimensional, and gives the trace of a trace-class operator on Hilbert space.  We introduce a 2-dimensional analog of this invariant, the `2-trace'.  The 2-dimension of a finite-dimensional separable k-algebra A is the dimension of the center of the algebra.  This 2-dimension is also the value F_A(S^1 x S^1) of the torus in the 2-dimensional field theory F_A associated to the algebra. Given a 2-endomorphism p of the algebra (that is an element of the center), the 2-trace of p is the value of the field theory on a torus with a defect point labeled by p.  Generalizations of this invariant to other defect configurations make sense even when the algebra is not finite-dimensional or separable, and this leads to a general notion of 2-trace class and 2-trace in any 2-category.  This is joint work with Andre Henriques.

Mon, 10 Oct 2016
14:15
L4

Ricci Solitons

Andrew Dancer
(Oxford)
Abstract

We review the concept of solitons in the Ricci flow, and describe various methods for generating examples, including some where the equations

may be solved in closed form

Thu, 13 Oct 2016
17:30
L6

The theory of the entire algebraic functions

Ehud Hrushovski
(Oxford)
Abstract

Van den Dries has proved the decidability of the ring of algebraic integers, the integral closure of the ring of integers in
the algebraic closure of the rationals.  A well-established analogy leads to ask the same question for the ring of complex polynomials.
This turns out to go the other way, interpreting the rational field.    An interesting structure on the
limit of Jacobians of all complex curves is encountered along the way. 

Mon, 14 Nov 2016
14:15
L4

Integrals and symplectic forms on infinitesimal quotients

Brent Pym
(Oxford)
Abstract

Title: Integrals and symplectic forms on infinitesimal quotients

Abstract: Lie algebroids are models for "infinitesimal actions" on manifolds: examples include Lie algebra actions, singular foliations, and Poisson brackets.  Typically, the orbit space of such an action is highly singular and non-Hausdorff (a stack), but good algebraic techniques have been developed for studying its geometry.  In particular, the orbit space has a formal tangent complex, so that it makes sense to talk about differential forms.  I will explain how this perspective sheds light on the differential geometry of shifted symplectic structures, and unifies a number of classical cohomological localization theorems.  The talk is
based mostly on joint work with Pavel Safronov.

 

Thu, 20 Oct 2016
16:00
L6

An Arithmetic Chern-Simons Invariant

Minhyong Kim
(Oxford)
Abstract

Abstract: We will recall some analogies between structures arising from three-manifold topology and rings of integers in number fields. This can be used to define a Chern-Simons functional on spaces of Galois representations.  Some sample computations and elementary applications will be shown.

Thu, 13 Oct 2016
16:00
L6

Representation of integers by binary forms

Stanley Yao Xiao
(Oxford)
Abstract

Let $F$ be a binary form of degree $d \geq 3$ with integer coefficients and non-zero discriminant. In this talk we give an asymptotic formula for the quantity $R_F(Z)$, the number of integers in the interval $[-Z,Z]$ representable by the binary form $F$.

This is joint work with C.L. Stewart.

Tue, 01 Nov 2016

12:00 - 13:30
L4

Integrable Statistical Mechanics in Mathematics

Paul Fendley
(Oxford)
Abstract


I will survey of some of the many significant connections between integrable many-body physics and mathematics. I exploit an algebraic structure called a fusion category, familiar from the study of conformal field theory, topological quantum field theory and knot invariants. Rewriting statistical-mechanical models in terms of a fusion category allows the derivation of combinatorial identities for the Tutte polynomial, the analysis of discrete ``holomorphic'' observables in probability, and to defining topological defects in lattice models. I will give a little more detail on topological defects, explaining how they allows exact computations of conformal-field-theory quantities directly on the lattice, as well as a greatly generalised set of duality transformations.
 

Mon, 11 Jul 2016

14:45 - 15:45
L3

(COW SEMINAR) Higgs bundles and determinant divisors

Nigel Hitchin
(Oxford)
Abstract

Following an idea of Gaiotto, a symplectic representation of a complex Lie group G defines a complex Lagrangian subvariety inside the moduli space of G-Higgs bundles. The talk will discuss the case of G=SL(2) and its link with determinant  divisors, or equivalently Brill-Noether loci, in the moduli space of semistable SL(2)-bundles. 

Subscribe to Oxford