What is bubbling?
Abstract
I plan to discuss finite time singularities for the harmonic map heat flow and describe a beautiful example of winding behaviour due to Peter Topping.
I plan to discuss finite time singularities for the harmonic map heat flow and describe a beautiful example of winding behaviour due to Peter Topping.
I will report on some joint work with Jacob Tsimerman
concerning multiplicative relations among singular moduli.
Our results rely on the ``Ax-Schanuel'' theorem for the j-function
recently proved by us, which I will describe.
Expansion, rank gradient and virtual splitting are all concepts of great interest in asymptotic group theory. We discuss a result of Marc Lackenby which demonstrates a surprising relationship between then, and give examples exhibiting different combinations of asymptotic behaviour.
The notion of prime decomposition will be defined and illustrated for
manifolds. Two proofs of existence will be given, including Kneser's
classical proof using normal surface theory.
In this talk, we will introduce the notions of systolic and residual girth growth for finitely generated groups. We will explore the relationship between these types of growth and the usual word growth for finitely generated groups.
Associahedra are polytopes introduced by Stasheff to encode topological semigroups in which associativity holds up to coherent homotopy. These polytopes naturally form a topological operad that gives a resolution of the associative operad. Muro and Tonks recently introduced an operad which encodes $A_\infty$ algebras with homotopy coherent unit.
The material in this talk will be fairly basic. I will cover operads and their algebras, give the construction of the $A_\infty$ operad using the Boardman-Vogt resolution, and of the unital associahedra introduced by Muro and Tonks.
Depending on time and interest of the audience I will define unital $A_\infty$ differential graded algebras and explain how they are precisely the algebras over the cellular chains of the operad constructed by Muro and Tonks.
I will discuss various types of filling functions on topological spaces, stating some results in the area. I will then go onto prove that a finitely presented subgroup of a hyperbolic group of cohomological dimension 2 is hyperbolic. On the way I will prove a stronger result about filling functions of subgroups of hyperbolic groups of cohomological dimension $n$.
In this talk I will try to show how certain asymptotic properties of a random walk on a graph are related to geometric properties of the graph itself. A special focus will be put on spectral properties and isoperimetric inequalities, proving Kesten's criterion for amenability.
We say a group is accessible if the process of iteratively decomposing G as an amalgamated free product or HNN extension over a finite group terminates in a finite number of steps. We will see Dunwoody's proof that FP2 groups are accessible, but that finitely generated groups need not be. If time permits, we will examine generalizations by Bestvina-Feighn, Sela and Louder.