Mon, 17 Nov 2014

12:00 - 13:00
L5

The holographic supersymmetric Renyi entropy in five dimensions

Paul Richmond
(Oxford)
Abstract

I will describe the computation of the supersymmetric Renyi entropy across an entangling 3-sphere for five-dimensional superconformal field theories. For a class of USp(2N) gauge theories I’ll also construct a holographic dual 1/2 BPS black hole solution of Euclidean Romans F(4) supergravity. The large N limit of the gauge theory results will be shown to agree perfectly with the supergravity computations.

Mon, 27 Oct 2014

12:00 - 13:00
L5

Global string models with chiral matter and moduli stabilisation

Sven Krippendorf
(Oxford)
Abstract

I will discuss the implementation of explicit stabilisation of all closed string moduli in fluxed type IIB Calabi-Yau compactifications with chiral matter.  Using toric geometry we construct Calabi-Yau manifolds with del Pezzo singularities. D-branes located at such singularities can support the Standard Model gauge group and matter content. We consider Calabi-Yau manifolds with a discrete symmetry that reduces the effective number of complex structure moduli, which allows us to calculate the corresponding periods and find explicit flux vacua. We compute the values of the flux superpotential and the string coupling at these vacua. Starting from these explicit complex structure solutions, we obtain AdS and dS minima where the Kaehler moduli are stabilised by a mixture of D-terms, non-perturbative and perturbative alpha'-corrections as in the LARGE Volume Scenario.

Mon, 20 Oct 2014

12:00 - 13:00
L5

Calabi-Yau Fourfolds, F-theory and Fluxes

Andreas Braun
(Oxford)
Abstract

I will discuss several recent developments regarding the construction of fluxes for F-theory on Calabi-Yau fourfolds. Of particular importance to the effective physics is the structure of the middle (co)homology groups, on which new results are presented. Fluxes dynamically drive the fourfold to Noether-Lefschetz loci in moduli space. While the structure of such loci is generally unknown for Calabi-Yau fourfolds, this problem can be answered in terms of arithmetic for K3 x K3 and a classification is possible.

Mon, 17 Nov 2014

16:00 - 17:00
C2

Grothendieck Duality through Modern Methods

Alex Betts
(Oxford)
Abstract
We give an overview of Amnon Neeman's proof of Grothendieck's duality, working in the unbounded derived category and constructing the exceptional inverse image functor by appealing to an abstract adjoint functor theorem. The focus will be on developing the theory of the unbounded derived category and Spaltenstein's techniques for applying this theory in the algebro-geometric framework.
Thu, 23 Oct 2014

16:00 - 17:00
L5

Şoför İş İlanları

Julio Andrade
(Oxford)
Further Information

Şoför iş ilanları: https://www.soforilan.com/

Abstract

In this seminar I will discuss a function field analogue of classical problems in analytic number theory, concerning the auto-correlations of divisor functions, in the limit of a large finite field.

Thu, 27 Nov 2014

16:00 - 17:00
L5

Twitter video indir

Przemyslaw Chojecki
(Oxford)
Further Information

Twitter video indirme sitesi: https://indireyim.com/

Abstract

The classical conjecture of Serre (proved by Khare-Winterberger) states that a continuous, absolutely irreducible, odd representation of the absolute Galois group of Q on two-dimensional F_p-vector space is modular. We show how one can formulate its analogue in characteristic 0. In particular we discuss the weight part of the conjecture. This is a joint work with John Bergdall.

Thu, 23 Oct 2014

17:30 - 18:30
L6

Self-reference in arithmetic

Volker Halbach
(Oxford)
Abstract

A G\"odel sentence is often described as a sentence saying about itself that it is not provable, and a Henkin sentence as a sentence stating its own provability. We discuss what it could mean for a sentence to ascribe to itself a property such as provability or unprovability. The starting point will be the answer Kreisel gave to Henkin's problem. We describe how the properties of the supposedly self-referential sentences depend on the chosen coding, the formulae expressing the properties and the way a fixed point for the formula is obtained. Some further examples of self-referential sentences are considered, such as sentences that \anf{say of themselves} that they are $\Sigma^0_n$-true (or $\Pi^0_n$-true), and their formal properties are investigated.

Subscribe to Oxford