Symplectic cohomology and circle-actions
Abstract
I will explain how to compute the symplectic cohomology of a manifold $M$ conical at infinity, whose Reeb flow at infinity arises from a Hamiltonian circle-action on $M$. For example, this allows one to compute the symplectic cohomology of negative line bundles in terms of the quantum cohomology, and (in joint work with Ivan Smith) via the open-closed string map one can determine the wrapped Fukaya category of negative line bundles over projective space. In this talk, I will show that one can explicitly compute the quantum cohomology and symplectic cohomology of Fano toric negative line bundles, which are in fact different cohomology groups, and surprisingly it is actually the symplectic cohomology which recovers the Jacobian ring of the Landau-Ginzburg superpotential.
14:00
D-spaces (3): Irreducibility and (a)D-spaces
Abstract
We'll discuss the connection between irreducibilty, D- and
aD-spaces.
14:15
Quantum deformations of projective three-space
Abstract
Noncommutative projective geometry is the study of quantum versions of projective space and other projective varieties. Starting with the celebrated work of Artin, Tate and Van den Bergh on noncommutative projective planes, a substantial theory of noncommutative curves and surfaces has been developed, but the classification of noncommutative versions of projective three-space remains unknown. I will explain how a portion of this classification can be obtained, via deformation quantization, from a corresponding classification of holomorphic foliations due to Cerveau and Lins Neto. In algebraic terms, the result is an explicit description of the deformations of the polynomial ring in four variables as a graded Calabi--Yau algebra.
14:15
New examples of non-Kahler Ricci solitons
Abstract
We produce new families of steady and expanding Ricci solitons
that are not of Kahler type. In the steady case, the asymptotics are
a mixture of the Hamilton cigar and the Bryant soliton paraboloid
asymptotics. We obtain some examples of Ricci solitons on homeomorphic
but non-diffeomorphic spaces. We also find numerical evidence of solitons
with more complicated topology.
Quantum cluster positivity and cohomological Donaldson-Thomas theory
Abstract
I will start by introducing Somos sequences, defined by innocent-looking quadratic recursions which, surprisingly, always return integer values. I will then explain how they can be viewed in a much larger context, that of the Laurent phenomenon in the theory of cluster algebras. Some further steps take us to the the quantum cluster positivity conjecture of Berenstein and Zelevinski. I will finally explain how, following Nagao and Efimov, cohomological Donaldson-Thomas theory leads to a proof of this conjecture in some, perhaps all, cases. This is joint work with Davison, Maulik, Schuermann.
Classical and quantum computing with higher algebraic structures
Abstract
Computational structures---from simple objects like bits and qubits,
to complex procedures like encryption and quantum teleportation---can
be defined using algebraic structures in a symmetric monoidal
2-category. I will show how this works, and demonstrate how the
representation theory of these structures allows us to recover the
ordinary computational concepts. The structures are topological in
nature, reflecting a close relationship between topology and
computation, and allowing a completely graphical proof style that
makes computations easy to understand. The formalism also gives
insight into contentious issues in the foundations of quantum
computing. No prior knowledge of computer science or category theory
will be required to understand this talk.
11:00
"Poincare series counting numbers of definable equivalence classes"
Abstract
Hrushovski-Martin-Rideau have proved rationality of Poincare series counting
numbers of equivalence classes of a definable equivalence relation on the p-adic field (in connection to a problem on counting representations of groups). For this they have proved
uniform p-adic elimination of imaginaries. Their work implies that these Poincare series are
motivic. I will talk about their work.
Free-by-cyclic groups are large
Abstract
I will introduce and motivate the concept of largeness of a group. I will then show how tools from different areas of mathematics can be applied to show that all free-by-cyclic groups are large (and try to convince you that this is a good thing).