Thu, 06 Jun 2013
11:00
SR2

Positivity Problems for Linear Recurrence Sequences

Ben Worrell
(Oxford)
Abstract

 We consider two decision problems for linear recurrence sequences (LRS) 
over the integers, namely the Positivity Problem (are all terms of a given 
LRS positive?) and the Ultimate Positivity Problem (are all but finitely 
many terms of a given LRS positive?). We show decidability of both 
problems for LRS of order 5 or less, and for simple LRS (i.e. whose 
characteristic polynomial has no repeated roots) of order 9 or less. Our 
results rely on on tools from Diophantine approximation, including Baker's 
Theorem on linear forms in logarithms of algebraic numbers. By way of 
hardness, we show that extending the decidability of either problem to LRS 
of order 6 would entail major breakthroughs on Diophantine approximation 
of transcendental numbers.

This is joint with work with Joel Ouaknine and Matt Daws.

Tue, 11 Jun 2013

15:45 - 16:45
L1

Bridgeland 40 conference: $E_n$-deformations and quantizations of derived stacks II

Chris Brav
(Oxford)
Abstract

We review the theory of $E_n$-algebras (roughly, algebras with $n$ compatible multiplications) and discuss $E_n$-deformation theory in the sense of Lurie. We then describe, to the best of our ability, the use of $E_n$-deformation theory in the on-going work of Calaque, Pantev, Toen, Vezzosi, and Vaquie about deformation quantization of derived stacks with shifted Poisson structure.

Tue, 11 Jun 2013

14:00 - 15:00
SR1

Bridgeland 40 conference: $E_n$-deformations and quantizations of derived stacks I

Chris Brav
(Oxford)
Abstract

We review the theory of $E_n$-algebras (roughly, algebras with $n$ compatible multiplications) and discuss $E_n$-deformation theory in

the sense of Lurie. We then describe, to the best of our ability, the use of $E_n$-deformation theory in the on-going work of Calaque, Pantev, Toen,

Vezzosi, and Vaquie about deformation quantization of derived stacks with shifted Poisson structure.

Fri, 31 May 2013
14:00
L2

Geometric Unity

Eric Weinstein
(Oxford)
Abstract

A program for Geometric Unity is presented to argue that the seemingly baroque features of the standard model of particle physics are in fact inexorable and geometrically natural when generalizations of the Yang-Mills and Dirac theories are unified with one of general relativity.

Mon, 20 May 2013

12:00 - 13:00
L3

The Riemann Zeta Function and the Berry-Keating Hamiltonian

Philip Candelas
(Oxford)
Abstract
It is an old idea that the imaginary part of the nontrivial Riemann zeros s =-1/2 + iE might be related to the eigenvalues of a hermitean operator H, and so to a quantum mechanical system. Such a system has been proposed by Berry and Keating; it is a harmonic oscillator with the "wrong" signatureH=1/2(xp + px). The difficulty and interest in implementing this proposal is the need to find suitable boundary conditions, or a self adjoint extension for H, since the classical phase space orbits are hyperbolae rather than circles. I will review interesting observations of Mark Srednicki relating the ground state wave functions of the Berry Keating hamiltonian and the conventional harmonic oscillator hamiltonian to the zeta function.
Subscribe to Oxford