Fri, 24 Feb 2012

14:00 - 15:30
Comlab

Homotopy Type Theory

Kobi Kremnizer
(Oxford)
Abstract

In recent years, surprising connections between type theory and homotopy theory have been discovered. In this talk I will recall the notions of intensional type theories and identity types. I will describe "infinity groupoids", formal algebraic models of topological spaces, and explain how identity types carry the structure of an infinity groupoid. I will finish by discussing categorical semantics of intensional type theories.

The talk will take place in Lecture Theatre B, at the Department of Computer Science.

Tue, 21 Feb 2012

15:45 - 16:45
L3

Quadratic differentials as stability conditions

Tom Bridgeland
(Oxford)
Abstract

I will explain how moduli spaces of quadratic differentials on Riemann surfaces can be interpreted as spaces of stability conditions for certain 3-Calabi-Yau triangulated categories. These categories are defined via quivers with potentials, but can also be interpreted as Fukaya categories. This work (joint with Ivan Smith) was inspired by the papers of  Gaiotto, Moore and Neitzke, but connections with hyperkahler metrics, Fock-Goncharov coordinates etc. will not be covered in this talk.

Fri, 17 Feb 2012

10:30 - 12:00
Comlab

Algebraic theories and locally presentable categories

Kobi Kremnizer
(Oxford)
Abstract

Algebraic theories, locally presentable categories and their application to type theories. The seminar will take place in Lecture Theatre A of the Department of Computer Science.

Mon, 20 Feb 2012

15:45 - 16:45
L3

Free and linear representations of Out(F_n)

Dawid Kielak
(Oxford)
Abstract

For a fixed n we will investigate homomorphisms Out(F_n) to

Out(F_m) (i.e. free representations) and Out(F_n) to

GL_m(K) (i.e. K-linear representations). We will

completely classify both kinds of representations (at least for suitable

fields K) for a range of values $m$.

Tue, 21 Feb 2012
12:00
L3

Correlation functions, Wilson loops, and local operators in twistor space

Tim Adamo
(Oxford)
Abstract

Abstract:

Motivated by the correlation functions-Wilson loop correspondence in maximally supersymmetric Yang-Mills theory, we will investigate a conjecture of Alday, Buchbinder, and Tseytlin regarding correlators of null polygonal Wilson loops with local operators in general position.  By translating the problem to twistor space, we can show that such correlators arise by taking null limits of correlation functions in the gauge theory, thereby providing a proof for the conjecture.  Additionally, twistor methods allow us to derive a recursive formula for computing these correlators, akin to the BCFW recursion for scattering amplitudes.

Fri, 03 Feb 2012

10:30 - 12:00
Comlab

Contextuality and Non-Locality: a geometric perspective

Samson Abramsky
(Oxford)
Abstract

The seminar will take place in Lecture Theatre A, Department of Computer Science.

-------------------

Contextuality and non-locality are features of quantum mechanics which stand in sharp contrast to the realistic picture underlying classical physics. We shall describe a unified geometric perspective on these notions in terms of *obstructions to the existence of global sections*. This allows general results and structural notions to be uncovered, with quantum mechanics appearing as a special case. The natural language to use here is that of sheaves and presheaves; and cohomological obstructions can be defined which witness contextuality in a number of salient examples.

This is joint work with Adam Brandenburger
 http://iopscience.iop.org/1367-2630/13/11/113036/
 http://arxiv.org/abs/1102.0264

and Shane Mansfield and Rui Soares Barbosa
 http://arxiv.org/abs/1111.3620

Tue, 31 Jan 2012
17:00
L2

"On the undecidability of profinite triviality"

Professor Martin Bridson
(Oxford)
Abstract

In this talk I'll describe recent work with Henry Wilton (UCL) in which

we prove that there does not exist an algorithm that can determine which

finitely presented groups have a non-trivial finite quotient.

Fri, 20 Jan 2012

10:30 - 12:00
Comlab

Selling category theory to the masses: a tale of food, spiders and Google

Bob Coecke
(Oxford)
Abstract

We will demonstrate the following. Category theory, usually conceived as some very abstract form of metamathematics, is present everywhere around us. Explicitly, we show how it provides a kindergarten version of quantum theory, an how it will help Google to understand sentences rather than words.

Some references are:

-[light] BC (2010) "Quantum picturalism". Contemporary Physics 51, 59-83. arXiv:0908.1787 
-[a bit heavier] BC and Ross Duncan (2011) "Interacting quantum observables: categorical algebra and diagrammatics". New Journal of Physics 13, 043016. arXiv:0906.4725
-[light] New Scientist (8 December 2010) "Quantum links let computers understand language". www.cs.ox.ac.uk/people/bob.coecke/NewScientist.pdf
-[a bit heavier] BC, Mehrnoosh Sadrzadeh and Stephen Clark (2011) "Mathematical foundations for a compositional distributional model of meaning". Linguistic Analysis - Lambek Festschrift. arXiv:1003.439

Wed, 15 Feb 2012
00:00

Centralisers of Subsystems of Fusion Systems -- St Hugh's, 80WR18

Jason Semeraro
(Oxford)
Abstract

Saturated fusion systems are a relatively new class of objects that are often described as the correct 'axiomatisation' of certain p-local phenomena in algebraic topology. Despite these geometric beginnings however, their structure is sufficiently rigid to afford its own local theory which in some sense mimics the local theory of finite groups. In this talk, I will briefly motivate the definition of a saturated fusion system and discuss a remarkable result of Michael Aschbacher which proves that centralisers of normal subsystems of a saturated fusion system, F, exist and are themselves saturated. I will then attempt to justify his definition in the case where F is non-exotic by appealing to some classical group theoretic results. If time permits I will speculate about a topological characterisation of the centraliser as the set of homotopy fixed points of a certain action on the classifying space of F.

Subscribe to Oxford