Thu, 11 Nov 2010

17:00 - 18:00

Partial Differential Equations: Origins, Developments and Roles in the Changing World

Professor Gui-Qiang G. Chen
(Oxford)
Abstract

The Mathematical Institute invites you to attend the Inaugural Lecture of Professor Gui-Qiang G. Chen. Professor in the Analysis of Partial Differential Equations. Examination Schools, 75-81 High Street, Oxford, OX 4BG.

There is no charge to attend but registration is required. Please register your attendance by sending an email to @email specifying the number of people in your party. Admission will only be allowed with prior registration.

---------------------------------------------------------------------------------------------------------------------------------------------------------------------

ABSTRACT

While calculus is a mathematical theory concerned with change, differential equations are the mathematician's foremost aid for describing change. In the simplest case, a process depends on one variable alone, for example time. More complex phenomena depend on several variables – perhaps time and, in addition, one, two or three space variables. Such processes require the use of partial differential equations. The behaviour of every material object in nature, with timescales ranging from picoseconds to millennia and length scales ranging from sub-atomic to astronomical, can be modelled by nonlinear partial differential equations or by equations with similar features. The roles of partial differential equations within mathematics and in the other sciences become increasingly significant. The mathematical theory of partial differential equations has a long history. In the recent decades, the subject has experienced a vigorous growth, and research is marching on at a brisk pace.

In this lecture, Professor Gui-Qiang G. Chen will present several examples to illustrate the origins, developments, and roles of partial differential equations in our changing world.

Wed, 23 Jun 2010

11:00 - 12:00
L3

Orientation Data and motivic DT invariants

Ben Davison
(Oxford)
Abstract

In this talk I will discuss "motivic" Donaldson-Thomas invariants, following the now not-so-recent paper of Kontsevich and Soibelman on this subject. I will, in particular, present some understanding of the mysterious notion of "orientation data," and present some recent work. I will of course do my best to make this talk "accessible," though if you don't know what a scheme or a category is it will probably make you cry.

Tue, 22 Jun 2010

11:00 - 12:00
L3

Deformations of Calibrated Submanifolds

Robert Clancy
(Oxford)
Abstract

This talk will begin with an introduction to calibrations and calibrated submanifolds. Calibrated geometry generalizes Wirtinger's inequality in Kahler geometry by considering k-forms which are analogous to the Kahler form. A famous one-line proof shows that calibrated submanifolds are volume minimizing in their homology class. Our examples of manifolds with a calibration will come from complex geometry and from manifolds with special holonomy.

We will then discuss the deformation theory of the calibrated submanifolds in each of our examples and see how they differ from the theory of complex submanifolds of Kahler manifolds.

Tue, 15 Jun 2010

13:15 - 13:45
DH 3rd floor SR

Uncovering the secrets of 'surface active Agents'

Cara Morgan
(Oxford)
Abstract

Following work done by the 'Oxford Spies' we uncover more secrets of 'surface-active Agents'. In modern-day applications we refer to these agents as surfactants, which are now extensively used in industrial, chemical, biological and domestic applications. Our work focuses on the dynamic behaviour of surfactant and polymer-surfactant mixtures.

In this talk we propose a mathematical model that incorporates the effects of diffusion, advection and reactions to describe the dynamic behaviour of such systems and apply the model to the over-flowing-cylinder experiment (OFC). We solve the governing equations of the model numerically and, by exploiting large parameters in the model, obtain analytical asymptotic solutions for the concentrations of the bulk species in the system. Thus, these solutions uncover secrets of the 'surface-active Agents' and provide an important insight into the system behaviour, predicting the regimes under which we observe phase transitions of the species in the system. Finally, we suggest how our models can be extended to uncover the secrets of more complex systems in the field.

Fri, 04 Jun 2010

11:30 - 12:30
Gibson 1st Floor SR

T-duality in AdS$_5$

Ron Reid-Edwards
(Oxford)
Abstract

This will discuss the paper of Ricci, Tseytlin & Wolf from 2007.

Tue, 01 Jun 2010

13:15 - 13:45
DH 1st floor SR

Towards a Colonic Crypt Model with a Realistic, Deformable Geometry

Sara-Jane Dunn
(Oxford)
Abstract

Colorectal cancer (CRC) is one of the leading causes of cancer-related death worldwide, demanding a response from scientists and clinicians to understand its aetiology and develop effective treatment. CRC is thought to originate via genetic alterations that cause disruption to the cellular dynamics of the crypts of Lieberkűhn, test-tube shaped glands located in both the small and large intestine, which are lined with a monolayer of epithelial cells. It is believed that during colorectal carcinogenesis, dysplastic crypts accumulate mutations that destabilise cell-cell contacts, resulting in crypt buckling and fission. Once weakened, the corrupted structure allows mutated cells to migrate to neighbouring crypts, to break through to the underlying tissue and so aid the growth and malignancy of a tumour. To provide further insight into the tissue-level effects of these genetic mutations, a multi-scale model of the crypt with a realistic, deformable geometry is required. This talk concerns the progress and development of such a model, and its usefulness as a predictive tool to further the understanding of interactions across spatial scales within the context of colorectal cancer.

Subscribe to Oxford