Fri, 01 May 2009 14:15 -
Fri, 08 May 2009 14:15
DH 1st floor SR

Unbiased Disagreement and the Efficient Market Hypothesis

Elyes Jouini
(Paris)
Abstract

Can investors with irrational beliefs be neglected as long as they are rational on average ? Does unbiased disagreement lead to trades that cancel out with no consequences on prices, as implicitly assumed by the traditional models ? We show in this paper that there is an important impact of unbiased disagreement on the behavior of financial markets, even though the pricing formulas are "on average" (over the states of the world) unchanged. In particular we obtain time varying, mean reverting and countercyclical (instead of constant in the standard model) market prices of risk, mean reverting and procyclical (instead of constant) risk free rates, decreasing (instead of flat) yield curves in the long run, possibly higher returns and higher risk premia in the long run (instead of a flat structure), momentum in stock returns in the short run, more variance on the state price density, time and state varying (instead of constant) risk sharing rules, as well as more important and procyclical trading volumes. These features seem consistent with the actual (or desirable) behavior of financial markets and only result from the introduction of unbiased disagreement.

Mon, 28 Jan 2008
13:15
Oxford-Man Institute

Brownian paths and Representation theory

Prof. Philippe Bougerol
(Paris)
Abstract

Counting paths, or walks, is an important ingredient in the classical representation theory of compact groups. Using Brownian paths gives a new flexible and intuitive approach, which allows to extend some of this theory to the non- cristallographic case. This is joint work with P. Biane and N. O'Connell

Tue, 30 Oct 2007
15:30
L3

Infinite locally random graphs

Pierre Charbit
(Paris)
Abstract
The Rado Graph R is a graph on a countably infinite number of vertices that can be characterized by the following property: for every pair of finite, disjoint subsets of vertices X and Y, there exists a vertex that is adjacent to every vertex in X and none in Y. It is often called the Random Graph for the following reason: for any 0

Subscribe to Paris