Mon, 24 Feb 2025
16:00
C4

Modularity of certain trianguline Galois representations

James Kiln
(Queen Mary University of London)
Abstract

A generalisation of Wiles’ famous modularity theorem, the Fontaine-Mazur conjecture, predicts that two dimensional representations of the absolute Galois group of the rationals, with a few specific properties, exactly correspond to those representations coming from classical modular forms. Under some mild hypotheses, this is now a theorem of Kisin. In this talk, I will explain how one can p-adically interpolate the objects on both sides of this correspondence to construct an eigensurface and “trianguline” Galois deformation space, as well as outline a new approach to proving a theorem of Emerton, that these spaces are often isomorphic.

Fri, 06 Dec 2024

12:00 - 13:00
Quillen Room

Some Uniserial Specht Modules

Zain Kapadia
(Queen Mary University of London)
Abstract
The Representation Theory of the Symmetric Groups is a classical and rich area of combinatorial representation theory. Key objects of study include Specht modules, the irreducible ordinary representations, which can be reduced modulo p (for p prime). In general, these are no longer irreducible and finding their decomposition numbers and submodule structures are key questions in the area. We give sufficient and necessary conditions for a Specht module in characteristic 2, labelled by a hook partition to be a direct sum of uniserial summands.


 

Thu, 13 Mar 2025
16:00
Lecture Room 4

Fourier Asymptotics and Effective Equidistribution

Subhajit Jana
(Queen Mary University of London)
Abstract

We talk about effective equidistribution of the expanding horocycles on the unit cotangent bundle of the modular surface with respect to various classes of Borel probability measures on the reals, depending on their Fourier asymptotics.  This is a joint work with Shreyasi Datta.

Fri, 03 May 2024

15:00 - 16:00
L5

Local systems for periodic data

Adam Onus
(Queen Mary University of London)
Abstract

 

Periodic point clouds naturally arise when modelling large homogenous structures like crystals. They are naturally attributed with a map to a d-dimensional torus given by the quotient of translational symmetries, however there are many surprisingly subtle problems one encounters when studying their (persistent) homology. It turns out that bisheaves are a useful tool to study periodic data sets, as they unify several different approaches to study such spaces. The theory of bisheaves and persistent local systems was recently introduced by MacPherson and Patel as a method to study data with an attributed map to a manifold through the fibres of this map. The theory allows one to study the data locally, while also naturally being able to appeal to local systems of (co)sheaves to study the global behaviour of this data. It is particularly useful, as it permits a persistence theory which generalises the notion of persistent homology. In this talk I will present recent work on the theory and implementation of bisheaves and local systems to study 1-periodic simplicial complexes. Finally, I will outline current work on generalising this theory to study more general periodic systems for d-periodic simplicial complexes for d>1. 

Thu, 01 Feb 2024

17:00 - 18:00
L3

The independence theorem in positive NSOP1 theories

Mark Kamsma
(Queen Mary University of London)
Abstract

Positive logic is a generalisation of full first-order logic, where negation is not built in, but can be added as desired. In joint work with Jan Dobrowolski we succesfully generalised the recent development on Kim-independence in NSOP1 theories to the positive setting. One of the important theorems in this development is the independence theorem, whose statement is very similar to the well-known statement for simple theories, and allows us to amalgamate independent types. In this talk we will have a closer look at the proof of this theorem, and what needs to be changed to make the proof work in positive logic compared to full first-order logic.

Tue, 23 Jan 2024

16:00 - 17:00
L6

Combinatorial moment sequences

Natasha Blitvic
(Queen Mary University of London)
Abstract

We will look at a number of interesting examples — some proven, others merely conjectured — of Hamburger moment sequences in combinatorics. We will consider ways in which this positivity may be expected: for instance, in different types of combinatorial statistics on perfect matchings that encode moments of noncommutative analogues of the classical Central Limit Theorem. We will also consider situations in which this positivity may be surprising, and where proving it would open up new approaches to a class of very hard open problems in combinatorics.

Thu, 09 Mar 2023
16:00
L4

Mass equidistribution for Siegel cusp forms of degree 2

Abhishek Saha
(Queen Mary University of London)
Abstract

I will talk about some current work with Jesse Jaasaari and Steve Lester where we investigate the analogue of the Quantum Unique Ergodicity (QUE) conjecture in the weight aspect for Siegel cusp forms of degree 2 and full level. Assuming the Generalized Riemann Hypothesis (GRH) we establish QUE for Saito–Kurokawa lifts as the weight tends to infinity. As an application, we prove the equidistribution of zero divisors.

Mon, 21 Nov 2022
14:00
L4

Dirac synchronization and Dirac Signal Processing

Ginestra Bianconi
(Queen Mary University of London)
Abstract

Topological signals associated not only to nodes but also to links and to the higher dimensional simplices of simplicial complexes are attracting increasing interest in signal processing, machine learning and network science. However, little is known about the collective dynamical phenomena involving topological signals. Typically, topological signals of a given dimension are investigated and filtered using the corresponding Hodge Laplacians. In this talk, I will introduce the topological Dirac operator that can be used to process simultaneously topological signals of different dimensions.  I will discuss the main spectral properties of the Dirac operator defined on networks, simplicial complexes and multiplex networks, and their relation to Hodge Laplacians.   I will show that topological signals treated with the Hodge Laplacians or with the Dirac operator can undergo collective synchronization phenomena displaying different types of critical phenomena. Finally, I will show how the Dirac operator allows to couple the dynamics of topological signals of different dimension leading to the Dirac signal processing of signals defined on nodes, links and triangles of simplicial complexes. 

Tue, 16 Jun 2020

11:30 - 12:45
L6

(Postponed)

Angus Macintyre
(Queen Mary University of London)
Abstract

TBA

Tue, 10 Mar 2020

15:30 - 16:30
L6

Random matrices, random Young diagrams, and some random operators

Sasha Sodin
(Queen Mary University of London)
Abstract

The rows of a Young diagram chosen at random with respect to the Plancherel measure are known to share some features with the eigenvalues of the Gaussian Unitary Ensemble. We shall discuss several ideas, going back to the work of Kerov and developed by Biane and by Okounkov, which to some extent clarify this similarity. Partially based on joint work with Jeong and on joint works in progress with Feldheim and Jeong and with Täufer.

Subscribe to Queen Mary University of London